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Abstract

This thesis considers a model of a scalar partial differential equation in the presence of a
singular source term, modeling the interaction between an inviscid fluid represented by
the Burgers equation and an arbitrary, finite amount of particles N (¢) moving inside the
fluid, each one acting as a point-wise drag force with a particle related friction constant
A

du+ Op(u/2) = 3 /\<h’ u(t,hi(t)>5(:v—hi(t))

1EN(t

The model was introduced for the case of a single particle by Lagoutiere, Seguin and
Takahashi in [60], is a first step towards a better understanding of interaction between
fluids and solids on the level of partial differential equations and has the unique property
of considering entropy admissible solutions and the interaction with shockwaves.

The model is extended to an arbitrary, finite number of particles and interactions like
merging, splitting and crossing of particle paths are considered.

The theory of entropy admissibility is revisited for the cases of interfaces and discontinu-
ous flux conservation laws, existing results are summarized and compared, and adapted
for regions of particle interactions. To this goal, the theory of germs introduced by An-
dreianov, Karlsen and Risebro [§] is extended to this case of non-conservative interface
coupling.

Exact solutions for the Riemann Problem of particles drifting apart are computed and
analysis on the behavior of entropy solutions across the particle related interfaces is
used to determine physically relevant and consistent behavior for merging and splitting
of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using
an explicit construction method, L bounds, an approximation of the particle paths and
compactness arguments to obtain existence of entropy solutions. Uniqueness is shown
in the class of weak entropy solutions using almost classical Kruzkov-type analysis and
the notion of L!-dissipative germs.

Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks
and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.






Zusammenfassung

Diese Arbeit befasst sich mit dem Modell einer skalaren partiellen Differentialgleichung
mit singuldrem Quellterm, das die Interaktion zwischen einem reibungsfreiem Fluid,
dargestellt durch die Burgers Gleichung, und einer gegebenen, endlichen Menge von sich
in dem Fluid bewegenden Partikeln N (t) beschreibt, die eine punktweise Zugkraft auf
das Fluid auswirken und durch eine entsprechende Reibungskonstante A charakterisiert
sind.

Ou+ 0,(u?/2) = > A(h’ u(@h,(t))d(a:—hi(t))

iEN(t

Das Modell wurde fiir den Fall der Interaktion mit einem einzelnen Partikel durch
Lagoutiere, Seguin and Takahashi in [60] eingefiihrt, stellt einen ersten Schritt zu einem
besseren Verstandnis der Interaktion zwischen einem Fluid und Festkorpern auf dem
Level der partiellen Differentialgleichungen dar und hat die einzigartige Eigenschaft,
dass Entropielsungen und die Interaktion mit Schockwellen beriicksichtigt werden.
Das Modell wird zu einer beliebigen, endlichen Anzahl von Partikeln erweitert und In-
teraktionen wie das Verschmelzen und Spaltung von Partikeln werden behandelt.
Existierende Theorie der Entropie-Zulassigkeit im Hinblick auf Interfaces und Erhal-
tungsgleichungen mit unstetiger Flussfunktion wird zusammengefasst, die Resultate wer-
den verglichen und fiir die Regionen mit Partikelinteraktionen angepasst. Zu diesem
Zweck wird die Theorie der Germs, eingefiihrt von Andreianov, Karlsen und Risebro [§],
auf den vorliegenden Fall eines nicht-erhaltenden Interfaces erweitert.

Fiir das Riemann Problem von auseinanderdriftenden Partikeln werden die exakten
Losungen berechnet und eine Analyse des Verhaltens von Entropielésungen iiber die
von den Partikeln erzeugten Interface wird genutzt, um ein physikalisch sinnvolles und
mit der Theorie eines einzelnen Partikels konsistentes Verhalten beim Verschmelzen und
Spalten von Partikeln herzuleiten. Mit Hilfe einer expliziten Konstruktionsmethode,
hergeleiteten L*° Beschriankungen, einer Approximation der Partikelpfade und Kom-
paktheitsargumenten wird gezeigt, dass das entsprechende Cauchy Problem wohlgestellt
ist. Eindeutigkeit im Raum der schwachen Entropielosungen wird mit beinahe klassis-
chen Argumenten der Theorie von Kruzkov sowie der Theorie von L!-dissipativen Germs
gezeigt.

Notwendige Grundlagen zu hyperbolischen Erhaltungsgleichungen, unter anderem die
Theorie schwacher Losungen, Schock- und Verdiinnungswellen sowie die Rankine-Hugoniot
Bedingung, werden in Grundziigen am Anfang der Arbeit wiederholt.
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Introduction

Hyperbolic conservation laws have been of ever increasing interest over the last decades,
offering numerous obstacles connected to the selection of physically meaningful solu-
tions, proving existence and uniqueness in more and more general classes of solutions
while extensively being used to describe physical applications. The model of a scalar
conservation law with singular source term considered in this thesis lines up with various
applications of the underlying equation, and is used to describe phenomena like traffic
flow, including constrained flux problems [36l 37, [64], [65], sedimentation in clarifier-
thickener units [24] 25] 26], 38] and the motion of particles and rigid bodies inside a fluid
or gas [3l 4, @l 10, 27, 411, [60, [78].

One particular theoretical obstacle for hyperbolic conservation laws in general is that the
structure of solutions demands for adjustments, relaxing the notion of derivatives and,
more importantly, for an additional admissibility condition to select physically correct
solutions. Although this additional constraint, mostly referred to as entropy condition, is
well understood for the case of scalar, continuous flux conservation laws due to Kruzkov
[58], and has been extended to the case of spatially discontinuous flux type scalar equa-
tions under certain assumptions on the flux [I], 2, [12], the latter case still lacks a theory
capturing all kinds of general flux functions.

After multiple approaches to define well-posed solutions to discontinuous flux equations
have been developed over the last decade, ranging from extending the Kruzkov formula-
tion [58] and corresponding entropy inequality from the continuous case [12, 66], using
a kinetic approach [14] [68] to defining a dissipative connection across the interface using
the theory of (A, B)-connections [I}, 2], Andreianov, Karlsen and Risebro came up with
a very general viewpoint on admissibility using so called germs, investigating interface
behavior by comparing to elementary solutions of the given equation [g].

Before introducing the model of fluid-particle interaction, which is the main part of this
thesis, the different approaches to entropy admissibility for discontinuous flux scalar
conservation laws are revisited and the different notions are compared regarding their
suitability for dealing with interfaces.

The model considered in this work is an extension of inviscid fluid-particle interaction
and is particularly interesting, as it is the first fluid-solid interaction model considering
entropy admissible solutions in the presence of shockwaves. The fluid is modeled by the
Burgers equation, while the particle acts as a point-wise drag force through the source
term. One could think of a water pipe with a small ball moving inside, neglecting the
friction and flux constraints towards the boundary of the pipe. Depending on their fric-
tion constant, the balls are partly permeable by the fluid.

It was originally introduced in [60] with a study of the Riemann problem for the case
of a single particle and extended to the Cauchy problem in [9, 11l [I0]. Some numerical
results for the case of a single particle have been achieved in [4, [I0] using mostly the
wave-front tracking method by Holden and Risebro [49].
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Contents

It is extended to the case of an arbitrary, finite amount of particles and particle inter-
actions like merging, splitting and the crossing of particle paths are considered. The
particles act as traveling interfaces, and new difficulties from the interaction and cre-
ation of interfaces are solved extending the theory of germs to fit the non-conservative,
time-dependent interface coupling.

Well-posedness of the Cauchy problem for multiple particles is achieved and the study
of interface behavior using a special Riemann problem, where the particles drift apart,
is a new example for the usefulness and generality of the theory of L!-dissipative germs.
The work is structured in the following way. Chapter 1 introduces the fundamentals
connected to scalar conservation laws and entropy admissibility of weak solutions in the
case of continuous flux functions. In order to be able to study the interfaces created by
the particles and to extend the necessary entropy admissibility condition to the model,
Chapter 2 revisits the theory of flux or source term induced interfaces for solutions of
conservation laws. This includes especially the theory of germs, which though very use-
ful, has not been investigated much after the original paper, see [5l [11].

Chapter 3 starts by briefly recalling the known theory of the model for a single particle,
as the corresponding existence result, L°°-bounds and bounds in total variation are used
later to obtain well-posedness of the Cauchy problem. The second part of Chapter 3
contains a study of the Riemann problem for multiple particles, where the study of a
domain of influence of the particles and the introduction of a new notion of generalized
germs allows for an existence and uniqueness result for the Riemann problem as well as
giving the basis to define entropy admissibility for interfaces influenced by multiple par-
ticles. Finally, the Cauchy problem is considered in the third part, admissible particles
are defined in a physically meaningful way, such that the dissipative behavior of interac-
tions like merging and splitting are consistent with analysis of germs for the simplified
case of the Riemann problem. Existence and L°° bounds are proven using an explicit,
time-stepping construction method and the results from the single-particle case. For
the case of splitting, an approximation of the particle paths is used, and compactness
is shown to obtain a weak entropy solution. The dissipativity of the particle related
germs is used to obtain the Kato inequality, uniqueness of weak entropy solutions and
the desired L!'-contraction property. Some conclusions and further possible extensions
for future projects are made at the end.
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1. Fundamentals

In this chapter, some fundamental notions of the hyperbolic partial differential equa-
tions are briefly revisited. As the problems considered in the later parts of this work are
partially based on the fundamental problem of non-uniqueness of solutions of conser-
vation laws, the notion of weak solution, the Rankine-Hugoniot condition and entropy
admissibility will be presented in a very compact manner. Furthermore, it will be shown
that the Burgers equation is the simplest example containing the critical behavior of
conservation laws. For further details and a more dedicated introduction to hyperbolic
conservation laws, the reader is kindly referred to well-recognized textbooks on the topic,
for example [34], 47, [49].

1.1. Conservation laws

Hyperbolic conservation laws are time-dependent partial differential equations inspired
by physical problems in fluid and gas dynamics. Their study dates back to Euler and
has been of ongoing interest, not only due to the physical application, but also due to
some stunning mathematical problems connected to the regularity of solutions.

Remark 1.1.1. On of the most prominent examples is the reqularity of solutions to the
FEuler equations. Although the issue of well-posedness was partially answered by recent
studies of so called wild solutions [29, [35, [{2, [51], proving Onsager’s conjecture, the
debate about whether or not it is possible to find suitable admissibility conditions to
obtain well-posedness in a general framework is continuing, compare [22, [1])].

A hyperbolic conservation law is a balance law given by the following partial differ-
ential equation in divergence form:

Opu(t,x) +div f(u) =0 (1.1)
where x €  C R" is the spatial variable, t € RT and

u(t, x) is the conserved variable and unknown

f(u) is the flux function.

Integrating with respect to space and using the notion of total derivative gives

d

&t o u(t,x) dx =0,

which clarifies why w is called the conserved variable.

13



1. Fundamentals

As the topic of this work is the study of well-posedness of scalar hyperbolic conserva-

tion laws, the fundamental problem is the following initial value problem:
Given Q CR, T >0, up: 2 = R and f: R — R, search for a function u : 2 — R that
satisfies
Owu(t,z) + 0p f(u) =0 in Q x (0,7]
u(0, ) = up(z) x €

The intuitive approach is to search for smooth solutions, as the equation is demanding
for existence of first derivatives in space and time. Following this idea, solutions u €
CY(Q x [0,T]), or of even higher regularity, are called classical or strong solutions to
problem . If there exists a classical solution, it can be obtained using the method of
characteristics, a well-known method to solve quasi-linear partial differential equations
of first order. A rigorous introduction of its use in the context of conservation laws can
for example be found in [52].

However, even for very smooth initial data ug € C'°°, solutions to problems of type
can easily develop discontinuities. This displays in the characteristic curves inter-
secting after a finite time, and can be seen in the following classical example, taken from
[40]:

(1.2)

Example 1. Consider the initial value problem

u2
Qu(t,x)+ 0, | — ] =0 in R x (0,00
u(0,x) = up(x) in R x {t=0}
with initial data
1, if 2 <0
up(z) =q¢1—2, if0<z<1
0, if x > 1.

Computing the solution via characteristics gives

1 ife<t
u(t,r) = ¢ =% ift<z<i1
0 ifx>1

and clearly breaks down when ¢t > 1. The solution for ¢ > 1 embraces a discontinuity,
called shock, and writes for s(t) = L

L ifa<s(t)
ult, ) = {0, if x > s(t).

Therefore, it is clear that the search for classical solutions is not sufficient, and a gener-
alized class of solutions has to be considered.

14



1.2. Weak solutions and the Rankine-Hugoniot condition

1.2. Weak solutions and the Rankine-Hugoniot
condition

The necessity of including solutions of a certain non-regularity into a broader class of
generalized solutions to has led to the consideration of so called weak solutions.
Integrating with respect to space and time, multiplying with a testfunction ¢ €
C§° and using partial integration to have the derivatives on ¢, one has redesigned the
problem to incorporate solutions, where the non-regularity is restricted to jump-type
discontinuities.

Definition 1.2.1. Let ug € L*(Q). A function u € L>®(Q x (0,T)) is called weak
solution or solution in the distributional sense to the scalar conservation law , if it
satisfies

T
/ / (w0 + f(u)0y) dt dm+/ uo(x)p(0,2) de =0
QJo Q

for all ¢ € CF (2 x (0,7)).

Investigating which non-smooth solutions are allowed following this new definition,
one recovers a condition on the pointwise discontinuities, called the Rankine-Hugoniot
condition. This is done, also for higher spatial dimension, studying the flow across an
interface between two constant states and can be found for example in [40]. The result
is stated in the following proposition.

Proposition 1.2.2. Given a two domain partition Dy, Dy of [0, T]x 2, where D1, Dy are
separated by a smooth curve ¥ : t — (o(t),t), and further u € L*>((0,T) x Q) satisfying
locally in Dy, Dy in a classical sense, with u|p, = u1, u|p, = u2. Then u is a weak
solution in the sense of definition if and only if it satisfies the Rankine-Hugoniot
condition at the interface

(w1t 0(8)) = walt, o(9))) o' (1) = Flaus(t,0(8)) = Flun(t, (1)), (1.4)

At last, it is also interesting to remark that given certain smoothness criteria are sat-
isfied, solutions to are smooth, thus of strong or classical type, at least for a finite
time. This property holds even for some of the more delicate systems concerning well-
posedness, like the Euler or Navier-Stokes equations. Additionally, it has been proven
even for many systems of conservation laws, that for as long as a strong solution exists,
every weak solution coincides with the strong solution, answering the question of unique-
ness at least for this finite time interval. This notion is called weak-strong uniqueness
and is used vastly both in theoretical aswell as numerical approaches to systems like
Euler or Navier-Stokes, compare for example [43] 45, [79]. The first proposition states
the existence result for strong solutions in the case of scalar conservation laws. A proof
can be found in [56].

15



1. Fundamentals

Proposition 1.2.3. Let ug € CY(R), f € C*(R), such that f” and ug are bounded
functions on R. Then there exists a finite time interval [0,t*), such that problem
has a classical solution u € C*([0,*) x R).

Concerning weak-strong uniqueness, the following proposition provides the result for
the incompressible Euler equations, and acts as the basis for further results in the di-
rection of the Navier-Stokes equations. A proof and further details on weak-strong
uniqueness and relative energy methods can be found for example in a recent summary
on the topic, [79].

Proposition 1.2.4. Letu € L°°((0,T); L*(Q2)) be a weak solution and U € C*(Qx[0,T])
a strong solution of the incompressible Euler equations

Ou + div(u®@u) + Vp =0,

div u =0,

and assume that u and U share the same initial datum ug. Assume moreover that

1 1
/ lu(r, 2)|2dz < / o () [2da
2 Ja 2 Ja

for almost every 7 € (0,T). Then u(r,x) = U(r,x) for almost every (t,z) € (0,T) x Q.

1.3. Entropy admissibility

It is widely known in the field of conservation laws, that weak solutions to , al-
though naturally satisfying the Rankine-Hugoniot condition, are not unique in general.
Whenever there is no smooth solution to given initial data, an additional condition has
to be applied in order to prevent non-physical shocks from appearing. The multitude of
weak solutions can be seen in the following example.

Example 2. Consider the Burgers equation with given initial data

u? 0, <0
15) o, | —1]=0 0) = ’
e z(2> ’ w(,0) {1, 2> 0.

Given the solution only needs to satisfy the Rankine-Hugoniot condition, one can give
a whole family of solutions by considering 2-shock solutions of the form

0, if z<at/2,
ua(t, ) =< o, if  at/2 <z < (1+a)t/2,
1, it x> (1+a)t)2

It is easily checked that the shocks satisfy the Rankine-Hugoniot condition independent
of a € (0,1) and the solution outside of the shocks is stationary and indeed a solution to

16



1.3. Entropy admissibility

the given initial data. The immediate consequence is the need of another condition to
select the physically meaningful solution. The following smooth solution is the correct
one, which is stated for completeness:

0, if =z<0,
ut,z) =4 %, if 0<x<t,
1, if x>t

Solutions of this type, resolving a discontinuity into a smooth fan of characteristics is
called and will be referred to as a rarefaction wave.

Remark 1.3.1. The initial value problem given in Example 2, where the initial data is
composed of two constant states, is called a Riemann problem. Riemann problems are
of great use when studying the behaviour of solutions of partial differential equations, as
they single out how the solution evolves around an initial discontinuity. Many numer-
ical approaches, including the well-known Roe-Solver, are built on solving sequences of
Riemann problems locally [71, [70].

There are multiple conditions granting the necessary dissipativity of shocks, compare
for examples [21), B34], however, as this work later deals with effects of interfaces and
discontinuous flux functions, the Kruzkov entropy condition and related L'-dissipativity
will be introduced here and was originally published in [5§].

The general form of the additional constraint was discovered by Crandall and Lions [31],
by adding a small diffusion term, representing viscosity, to the conservation law and
considering only weak solutions that are limits of series of solutions to the approximated
System

Oyt + 0y f(u®) = €dggut. (1.5)

Given a convex function 7 € C?(R), called entropy, and ® € C?(R), called entropy flux,
such that ® = 7' f/, multiplication of ([1.5)) with n’(u) yields

Om(u) + 0, P(u) = en (u) Opzu’
= € [Duan(u®) — 0" (u) - (u)?]
Notice that the last term on the right hand side is positive due to the convexity of 7.

Multiplying the above with a nonnegative smooth function ¢ € C§°(R) with compact
support and integrating by parts yields

T T
/0 /R{U(U )0¢ ¢ + @ (uf)0pp}dxdt > —6/0 /Rn(u )0z dxdt.

Letting € — 0 one obtains the entropy inequality

/O ' /R (1) s + D(w)Dagdxdt > 0. (1.6)

17



1. Fundamentals

Remark 1.3.2. Notice that the conservation porperty for the entropy variables can easily
be recovered using the original equation and

' (u) - f'(u) = ' (u).
It follows
om(u) + 8, (u) = 1 (u)opu + & (u)dzu = n'(u)(— f(u)dpu) + &' (u)dpu = 0.

Remark 1.3.3. It is worthwhile to note that the idea of Crandall and Lions to consider
limits of solutions to parabolic problems, like , 18 not restricted to approximating
the viscous case by using a diffusion term. In fact, any higher order differential operator
term could be used to obtain an admissibility condition. The choice of viscosity is due to
physical context, compare the discussion on this in the second chapter of [21)].

In order to obtain the physically correct solution, it is not enough if is satisfied
for a single convex entropy. In his ground breaking work [58], Kruzkov introduces a
set of entropies that give a sufficient restriction to the solutions of the approximated
equation , using the entropy inequality to reach the desired L!'-dissipativity
property. Given k € R, he introduced the entropy - entropy flux pair

n(u) = u—kl,
®(u, k) = sgn(u — w)(f(u) = f(£)).

which is referred to as Kruzkov entropy and Kruzkov entropy flux. Using (|1.6), the
definition of weak (Kruzkov) entropy solution follows.

Definition 1.3.4.
Let ug € L>®(2). A function v € L*(Q x (0,T)) is called generalized weak entropy
solution to the scalar conservation law if it satisfies

/ |u — Kk|Owp(x, t)dxdt + / |ug — k|Opp(z, 0)dxdt + / D (u, k)Oppdrdt > 0
Rt xR R Rt xR
(1.7)

for all k € R and ¢ € C§°(R).

The notion of entropy admissibility is, as mentioned before, inspired by physical appli-
cation, especially thermodynamics, but although it is well-known for the scalar case with
continuous flux functions, it is far more difficult and problem-dependent for non-smooth
fluxes, which will be discussed in the next chapter, and in many cases an open problem
in higher dimensional spaces for systems of conservation laws, examples and discussion
on this can be found in [20] 43} [44].

At last, weak entropy solutions of scalar conservation laws are L'-dissipative in
the following sense.

18



1.3. Entropy admissibility

Proposition 1.3.5. Let ug,vg € L*°(R), f € Lip(R). Weak entropy solutions u,v €
L>((0,T) x R) satisfying , also satisfy the L' contraction property

lult, ) = v, )l < Jluo = vol - (1.8)

This directly implies uniqueness of weak entropy solutions given initial data
ug € L*((0,T) x R).

The proof is considered classical, following the idea of Kruzkov, and uses so called
doubling of variables to merge the entropy inequalities for both entropy solutions wu, v.
For details in this method, the reader is pointed to the original paper [58] or [47]. One
recovers the Kato inequality

Orlu = vl + 0, (sgn(u — ) (f(u) = f(v))) < 0. (1.9)

Integrating this inequality along the Cone Crr = {(z,t) € R x (0,00),|z| < R+
M(T —t),t € [0,T]} gives a local version and by extension (L.8). This clearly implies
uniqueness of entropy solutions (assuming two solutions with the same initial data, with
their L!-distance only decreasing).

19



2. Interfaces, pointwise disturbances
and L!-dissipativity

Conservation laws with discontinuous flux functions or source terms corresponding to
point-wise disturbances have been a field of particular interest over the last years. The
question how to define entropy admissible solutions was tackled in many different ways,
ranging from extending the Kruzkov formulation and corresponding entropy inequality
from the continuous case [12, [66], using a kinetic approach [14] 68] to defining a dissipa-
tive connection across the interface using the theory of (A, B)-connections [1 [2].
Summarizing and including many of the known results into a new framework, An-
dreianov, Karlsen and Risebro developed the theory of germs in their well-known paper
from 2011 [8]. The theory is based on the comparison of constant states, forming so
called elementary solutions to the given initial value problem. Besides giving interesting
insights into the different admissibility criteria, the theory allows for comparison and, to
a certain extent, proof of equivalency of different entropy conditions.

This chapter summarizes the existing theory on flux or source-term induced discontinu-
ities for conservation laws and corresponding well-posedness of weak solutions. The first
section gives an introduction to discontinuous flux conservation laws and related prob-
lems, giving different solutions to approach dissipativity and uniqueness in the space of
weak solutions. The second section introduces and summarizes the theory of germs, the
most general framework to deal with interfaces in the context of conservation laws and
will be extended to a case of non-conservative coupling for the application of particles
induced interfaces in chapter 4. Some examples for better understanding will be given
and equivalency of the different entropy admissibility formulations is proven under some
typical convexity assumptions on the flux function.

2.1. Discontinuous flux conservation laws

This section deals with the Cauchy Problem for discontinuous flux conservation laws,
where the flux function admits a single discontinuity with respect to the spacial variable.
The model equation is

B+ Dy f (u, ) = 0, (2.1)

where the flux function is assumed to be piecewise Lipschitz continuous with a single
discontinuity. Note that this could without effort be extended to multiple discontinuities,
as the effects remain local. The model has numerous applications, ranging from
industrial sedimentation in clarifier-thickener units [24 25|, 26] [38], traffic flow [36, 64 65]
and modelling gravity [53] to fluid-solid interactions [10 [60]. In order to allow for a
physically meaningful definition of solution with respect to usual spaces of initial data,
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2.1. Discontinuous flux conservation laws

like ug € L°°, some assumptions on the flux function have to be made. As in many of the
mentioned works on the topic, the flux function is assumed to be a continuous, convex or
concave function multiplied with a discontinuous, piecewise constant coefficient function,
resulting in the model

2.2
u(0,z) = up(z) (22)
with
F(u,z) = k(z) f(u), f € Lip(R)
kr, for x <0
k(z) = -, ki, kr € R.
(@) {k‘R for x >0 bR

It should be mentioned that among the other investigated models, a lot of theory has

been done for F(u,x) = H(x)f(u)+ (1 — H(z))g(u), with H the Heaviside function and
f, g of some regularity (for example f,g € C?, strictly convex or concave and of super-
linear growth). For more details on models of this type, the reader is referred to [2] [46].
Some studies on generalizations of the flux function towards not strictly convex fluxes
have been done in [I}, [0 [63]. Panov has extended some of the well-posedness theory to
the case of fluxes with discontinuities with respect to the conserved variable, compare
[48, [66].
Note that even under the strong assumptions of , given certain flux functions, the
problem is not necessarily solvable for arbitrary initial data, as the following example
shows. In multiple space dimension, though not the topic of this work, the matter be-
comes even more difficult. In fact, even for continuous flux problems of conservation laws
in multiple space dimensions, uniqueness of weak entropy solutions is only guaranteed
under additional conditions, see [I8), 57] for counterexamples in the general case.

Example 3. Consider model ({2.2)) with
fw) = (u+1)°

1 f <0
k() = or x <
-1 for x > 0,

(z) ud for <0, u} € R™
Ug\r) =
ud for z >0, u} € RT

Clearly, away from the interface at z = 0, constant states should still be stationary
solutions to the problem, such that u(l),u% solve the equation (which can also be seen
by using the method of characteristics, realizing all characteristics are straight lines
towards the origin) and therefore, the only possible solution should be (u(l),u%) with a
stationary shock at the origin. However, it is not possible for this shock to satisfy the
Rankine-Hugoniot condition as this would mean

flug) = —f(ug)
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2. Interfaces, pointwise disturbances and L'-dissipativity

which is impossible due to the choice of f(-) € RT.

There are multiple ways to solve equations of type for given initial data, computing
the vanishing viscosity limit [8], numerically using schemes like wave-front tracking, see
for example [23, 24, 25], or by solving the Hamilton-Jacobi equation, compare [2, [46].
This work focuses on the first approach.

2.1.1. Kruzkov entropy condition for discontinuous flux
problems

As in the continuous case, an entropy condition is mandatory to exclude non-physical
(non-dissipative) shockwaves. However, an adaptation has to be made to credit the ad-
ditionaly discontinuity induced by the flux function. Using the Kruzkov entropy-entropy
flux pair derived in the continuous case, following the same procedure to derive the en-
tropy inequality involves spatial derivatives on the flux, which make no sense for the
discontinuous coefficient k(z). To resolve this issue, one defines functions k.(z) € C*(R)
sufficiently smooth with k.(z) — k(z) as € — 0. Therefore, starting from the entropy
inequality with flux fe(u,z) = ke(z) f(u) and multiplying with sgn(u — k) gives

Olu — K| + 0y (ke(z)q(u, k) + kL (2) f(k)sgn(u — k) < 0. (2.3)
& Ofu— k| + 0y (ke(2)q(u, k) < —kl(x)f(k)sgn(u — k)
= Ofu— K|+ 0y (ke(2)q(u, k) < |ke(@)1f (%),

the last step being a rough estimate on the right side. Rewriting this in the distributional
form, writing the derivatives on the testfunction by partial differentiation and letting
e — 0 leads to a first definition of admissible solutions.

Definition 2.1.1.
Let ug € L=(R). A function u € L=((0,T) x R) with traces v~ (u),y"(u) is called weak
(Kruzkov) entropy solution to the initial value problem if it is a weak solution of

satisfying

/ / lu(t, z) — k|0 p(t, x)dx dt+/ |up(x) — K|p(0, ) dx
R+ JR

(2.4)
/ /k (1, ) z¢dxdt+|l<:L—/cR|/ F(9)6(L,0)dt >0
R+

for all testfunctions ¢ € C°(Ry x R) and x € R.

Multiplying with a cut-off functio (e = %C (%) centered at the origin reveals the condi-

'For more details on the cut-off function, see the Appendix
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2.1. Discontinuous flux conservation laws

tion governing the interface discontinuity
kr®(y~ (u), k) — kr®(v" (u), k) — |kr — kg|f(x) < 0.

This corresponds exactly to the dissipativity in the continuous case, with a relaxation
due to the discontinuity of the flux. The following theorem states the L!-contractivity
of corresponding entropy solutions.

Theorem 2.1.2. Given up,v9 € L>(R), weak entropy solutions u,v € L*°((0,T) x R)
to , that is, solutions that satisfy and in the weak sense, satisfy the

L'-contraction property

The proof is done in several steps, where the goal is to recover the Kato inequality
(1.9), which gives the L'-contraction integrating along a cone C Rr,T, compare section

Proof.

Proving uniqueness follows the same steps as in the continuous flux case, with the differ-
ence that an additional left and right boundary term appears at the interface. Starting
from the entropy inequality , the proof is done in three steps.

Step 1. Choose a testfunction ¢ € C§° to have compact support away from the ori-
gin {x = 0}. Plugging this testfunction into (2.4) excludes the problematic interface,
because ¢(t,0) = 0. Given Riemann initial data

() uy, for x <0
up(x) =
0 ug foraz >0

the problem separates into two continuous flux problems left and right of the origin

ot + 0y (kp f(wh)) =0,

. for <0 (2.5)
w (0,2) = ur,

Oyw? + 0, (kg f(w?) = 0,

for x>0 2.6
w?(0,2) = up (2:6)

Both problems satisfy f € Lip(R) and therefore, following the same calculations as in
the proof of Proposition [1.3.5] namely doubling of variables, gives the Kato inequality
locally left and right of the origin. Given u,v are each weak entropy solutions to both

local problems ([2.5)), (2.6)), one recovers
/ /\u(t,x)—v(m)|8tw(t,x) dx dt+/ o () — vo(2)|(0, 2) dx
R+ JR R

+/R+/Rk(x)q>(u,v)am dx dt > 0.
(2.7)
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2. Interfaces, pointwise disturbances and L'-dissipativity

Step 2. In the second step, the restriction on the testfunction ¥ needs to be removed to
recover the behavior at the interface {x = 0}. Therefore one defines a new testfunction
e € C§°(R) in the following way

%(tvﬂf) = ¢(t,$)(1 - we(w)) (2'8)

with a testfunction ¢(t,z) € C§°(R), such that 0 € supp ¢ and

0, if |x| > 2e
we(z) = ¢ 22l if e < ja| < 2 (2.9)
1, if |z| <e

Note that for e > 0, 0 ¢ supp 1. and choosing ) = ¢, in (2.7)) followed by passing to the
limit in € — 0 holds

/R+/R|u—v|at¢(t,x) dx dt—I—/R]uo—ng(O,x) dx+/R+/Rk(x)<I>(u,v)8rw dx dt

> / kr® (v~ (u),y (v)) — kr®(y* (u), 7" (v)) dt
R+
(2.10)

Note that the term on the right side, involving traces on u and v, which are denoted
by v%(u),yT(v) respectively, appears due to the spatial dependance of ®(u,v,z) =
k(z)®(u,v).

Step 3. To obtain the Kato inequality, all that remains to prove, is

0 < kr®(v (w),v (v) = kr®(y" (u), " (v)) (2.11)

which corresponds to a dissipative behavior at the interface. This is done carefully
studying case-by-case with respect to s,y*(u) and 4% (v), which can be found
in the Appendix The starting point however, lies in extracting the good interface
behaviour out of the original entropy inequality after applying the smoothened
coefficient function k.

Olu — K| + 0y (ke(2)®(u, k) + ki (2) f(r)sgn(u — k) < 0.

Taking this equation in distributional sense, multiplying with a testfunction (¢, z) and
passing to the limit in order to get the interface term, one obtains

kL@ (y™ ()7~ (v) = kr®(v* (w), 7" (v)) — [k — kgl f (k) < 0. (2.12)

By symmetry, one can assume kj > kr without loss of generality and a study of the
remaining cases to obtain from can be found in the Appendix. This im-
plies the Kato inequality and therefore uniqueness of weak solutions of , entropy
admissible in the sense of , and, by classical arguments (compare section , the
L'-contraction property, finishing the proof. ]
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2.1. Discontinuous flux conservation laws

Remark 2.1.3. It is possible to recover the Rankine-Hugoniot condition from ,
by using the boundaries of the entropy constant, kK = 0 and k = 1. Indeed, taking k = 0

n leads to
kpf (v~ (u)(t)) = krf (v (u)(t)) >0

and plugging k = 1 into it gives

—kpf(y~()(®) — F(1) = (=krf(y" (W) (1) = f(1
= krf(v™ (w)(t)) — krf (v (w)(t

Using the fact that the flux vanishes at the boundaries f(0) = f(1) = 0, gives in the
Rankine-Hugoniot condition at {x =0}

kL (f(v™ (w)(8) = kr(f(v" (w)(1)).

Remark 2.1.4. The proof is strongly based on the assumption of existence of traces
vE(u), v (v) towards the interface. Even though the existence of strong traces of the
fluz f(yF(u)) can be proven without assumptions on the flux function, see [8], the result
can not be extended to measure-valued solutions. It was shown however in [7], that as
long as a weak entropy solution exists, any measure-valued entropy solution coincides
with the weak entropy solution.

) >0

)
) <0

2.1.2. Adapted Kruzkov entropies

Following the idea, that given a new set of stationary solutions, a new notion of entropy,
entropy flux pair has to be considered, Audusse and Perthame introduced a new admis-
sibility criteria in [I2], which is a well-recognized approach to entropy admissibility for
discontinuous flux problems nowadays, compare for example [2}, 8 111 15 2T, 28], [48], [66].

The theory is based on the comparison to piece-wise constant functions a(z), which
admit jump-type discontinuities at the points where the flux function is discontinuous.
It is easy to see that all trivial stationary solutions are solutions of this type, given the
correct, dissipative shock at the interface created by the flux. Thus one defines new
entropies

n(u,a) = lu—a(z)|, P(u,a,x)=sgn(u—a) (F(u7 x) — F(a, a:))

{(ZL for x <0

agr,ar € R.
ar forz >0’ ’

n(u,a) is called adapted Kruzkov entropy and ®(u, a,x) adapted Kruzkov entropy flux.
Recreating the same steps as in the previous section, one obtains the entropy inequality

/ / lu(t, z) — a(x)|0:p(t, x) dx dt —|—/ lup(x) — a(x)|¢(0,x) dx
R+ JR R

+/ / O (u,a,x)0z¢ dx dt > 0.
R+ JR
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2. Interfaces, pointwise disturbances and L'-dissipativity

Searching for the condition describing the behaviour of solutions across the interface,
multiplication with a cut-off function (. reveals the necessary dissipativity condition at
the interface

kr®(y*(u),ar) — kL®(y~ (u),az) < 0 (2.13)
As all solutions of (2.2)) need to satisfy (2.13)) in order to be L!-dissipative, which will be

shown at the end of this section, the inequality characterizes the stationary, piece-wise
constant, dissipative solutions giving the necessary information on the functions to com-
pare with (ar,ag), compare [12], where this second notion of entropy admissible weak
solutions to was originally derived.

The choice of a pair (ar,ar) € R? to define a suitable (stationary) solution to use for
comparison, needs to satisfy the Rankine Hugoniot condition, thus

kpf(ar) = krf(ar).

The admissibility condition for the interface, see [8], compare also section defining
admissible piece-wise constant states to compare with was found using a truncation in
the Kato inequality to the interface {z = 0}:

A pair (ar,apr) € R? is suitable to define a stationary solution to , if for any other
suitable pair (br,br), inequality holds, that is

kr®(ag, br) — k1 ®(az,br) < 0. (2.14)

Definition 2.1.5.

Let up € L*(R) and a(x) a piecewise constant stationary solution to . A function
u € L®(Ry x R) with traces v+ (u),v (u) is called weak (adapted Kruzkov) entropy
solution to the initial value problem if it is a weak solution of satisfying

/ / lu(t, z) — a(x)|0:p(t, x) dx dt+/ lup(z) — a(x)|¢(0,x) dx
R+ JR R

—|—/ /@(u,a,x)@xqb de dt > 0
R+ JR

(2.15)
for all testfunctions ¢ € C§°(Ry xR), all pairs (ar,ar) satisfying and additionally
kr® (vt (u),ag) — kp®(y~ (u),ar) < 0. (2.16)

The following theorem holds, which was shown in [12].

Theorem 2.1.6. Weak (adapted Kruzkov) entropy solutions to , defined by the
previous definition, statisfy the L'-contraction property (@, and therefore are unique
in the class of weak solutions.

Proof.

The proof follows the same steps as the proof of theorem After truncation with a
testfunction and thereafter recovering the interface by passing to the limit, one recovers
directly the Kato inequality , as the interface term vanishes due to . Following
the classical doubling of variables of Kruzkov gives the L'-contraction. O
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2.1. Discontinuous flux conservation laws

2.1.3. Kinetic formulation of conservation laws

This section gives an additional, interesting point of view towards entropy admissibil-
ity, considering a kinetic formulation for (2.2]). It has the advantage of not treating
the interface directly, and does not require any assumption on the existence of traces
towards the interface. However, even though a necessary condition is shown to give the
L'-contraction, it was not yet possible to link it to the kinetic entropy equation. The
theory of kinetic formulation for conservation laws was introduced by Lions, Perthame
and Tadmor [62], later summarized in [68] for the case of different continuous flux type
models and has rarely seen application in the context of discontinuous flux conservation
laws. In the continuous case, the elegant approach of embedding the nonlinearity of the
equation inside the argument of the operating function, resulting in a linear equation
allows for regularization and a very nice, simplified well-posedness theory. Many proofs,
including L'-dissipativity, are possible in a compact manner, offering an alternative to
the Kruzkov entropy approach. For a rigorous introduction to kinetic formulation for
conservation laws, the reader is referred to [68].

In contrary to the continuous case, it is not as easy to derive the kinetic entropy formu-
lation as a spatial derivative on the flux function again. As in , the discontinuous
coefficient function k(z) is smoothened. Starting from the entropy inequality in the
distributional sense ([1.6]), choosing as entropy n(u) = |u — &| — |¢|, existence of a non-
negative measure m(t,z,£) can be assumed without loss of generality, such that one
obtains an equality with a (arbitrary, finite) negative coefficient on the right side

On((Ju— &1 = IEl) + B [ke(@) ((F(w) = F(&))sen(u — &) — sgn(€) f(€)
+ K (@) f(€)sgnllu— € - lg)) = ~2m(t,z,).

Note that equation as well as all following equations need to be treated in the weak
(distributional sense). However, for better readability, the integral signs and testfunc-
tions are omitted here. The measure m(t,x, &) is called kinetic entropy defect measure,
and holds some useful properties, where the important ones are continuity with respect
to £ and Vi > 0

(2.17)

m(t,z,u(t,x)) = 0. (2.18)

Additionally, the kinetic indicator function y needs to be introduced. It is defined by

1, for 0 < € < u,
x(&u) =< —1, for u < £ <0,
0, otherwise

and holds the following properties, which are proven in [68]. A short proof as well as
more details on the kinetic entropy defect measure are included in the Appendix
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2. Interfaces, pointwise disturbances and L'-dissipativity

Theorem 2.1.7 (Main properties of ).
Let 8" € LSS, then the following properties related to x hold true.

loc’

Dex(E:u) = 5(€) — 5(¢ — u) (2.19)
/R S'(€)x(€w) de = S(u) — 5(0) (2.20)
/R (€ ) — X(E0)] de = [u— o] (2.21)

To rewrite (2.17) with respect to the kinetic function x(&;u), one first recognizes

1, fo<é<u,u>0
1&—u ¢

_5‘5—"&’_@: -1, ifu<é<0,u<0 :X(f,U)

10
—58*5(’1& =&l =€) =
0, else
(2.22)

Now multiplication of l) by (—%) and taking the derivative with respect to & gives

00 (~5 pp €1~ 1)) + 01— pehea) 17 0) = F(sntu — &) — senl©)1(©)

N

K@) f(€) = gg

m(t,x,§).

Using property of x(&;u), one obtains
Ax (& u) + k() f/(§)Dux(& u) — k(x) f/(§) = dem(t, x,§).

Dropping the regularization on k(z) again by letting e — 0 and integrating by parts on
both sides, one reaches the kinetic entropy formulation of ([2.2)).

Definition 2.1.8. Letu € C(R*; L1(R))NL® (R xR). Then u is called kinetic solution
to if there exists a nonnegative bounded measure m(t,xz,€) such that for all £ € R
and all testfunctions ¢ € CP(RT x Ry x Re)

/ M€ ) (B + (k(2)f(€))8) 6 dtdude + / (€ u0) ooy derde (2.23)

R xRy xR Ry xR
k) [ F@bpngris = [ 0o dmizit.6)
ExRe R xRy xRe
with x(&u(0,x)) = x(&up) and ¥ = {0} x Ry the line of the interface.

Remark 2.1.9. It is also possible to derive a kinetic formulation for so called sub-,
supersolutions using the notion of (Kruzkov) semi-entropies (u—&)*, (u—&)~, where u™
denotes the positive/negative part of u respectively. This approach was used in [13, [14)]
in an attempt to prove L'-dissipativity.
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2.1. Discontinuous flux conservation laws

Remark 2.1.10. So far, it has not yet been to accomplished to connect the notions
of adapted Kruzkov entropies and kinetic formulation directly, as the derivation of the
kinetic formulation requires a derivative with respect to the newly interpreted, former
constant &, which is discontinuous for the adapted Kruzkov entropies. The only link is
due to proving equivalency to standard Kruzkov entropy solutions, compare section
a formulation, which is only possible if the solution admits strong traces towards the
interface.

The result in this section is the following condition on the interface, which, if statisfied,
implies L'-dissipativity.

Theorem 2.1.11. Given ug € L®(R), then any kinetic entropy solution u in the sense
of Deﬁm’tion that satisfy and additionally for every kinetic solution v

(k) [ (&0 + (&) = IF Q) oppmey dtds = 0. (220)

ZXR&

is L'-dissipative in the sense of @

Proof. The goal will be to reach the L!-contraction, implying uniqueness, compare sec-
tion Given initial data ug,vg € L (R) and two kinetic entropy solutions u, v, equa-
tion holds for two respective entropy functions x(&;u) and x(§;v) with kinetic
defect measures m(t,z,&) and q(t, z, ). Thus the starting point is and

/ (€)@ + (E() ['(€))0r) dutdirde + / (€ v0) by drde  (2.25)

R xRy xRe Ry xRe

~ (ky — kn) / F1(©)baoydtde = / B dq(, 1,€).

2xRe R} xRy xR

Making use of the fact that the kinetic formulation is a linear equation, one applies a
regularization to the kinetic functions x.(&§;u) = x(§u) - 7 and x(&0) = x(&;v) - 7
with a regularizing kernel 7,

Te = l¢1 (t) l¢2 <$> l¢3 <€> ;
€1 €1 /) € €9 ) €3 €3

where ¢123 € C§°(R) are testfunctions. Now multiplying equation (2.23) with x.(&;v)
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2. Interfaces, pointwise disturbances and L'-dissipativity

and (2.25))) with x.(&;w) and adding the two resulting equations together, one obtains

/ Xe(E)Xe (65 0) (D1 + (k(2) £/(6)) D) bt + /xe<§;uo)xe@;vo)qﬁ{t:mdm&

R xRy xR R xR
(ki — k) / (xe(E:0) + X(&0)) F(€) ooyt
Eng
— / \e(€0) 06 dme (.1, ) + / Nel€: )06 dae(,€).
R xRy xR R} xRy xR

Integration by parts on the right side yields
=- / Oexe(§50)¢ dme(z,t, &) — / Iexe(§u)¢ dge(w,t,€).

R xRy xR R xRy xR
>- [ eedmet - [ @0 datnt. (220
R xRy xR R} xRy xRe

We discover another two equations by multiplying equations (2.23]) and (2.24)) by sgn(&)

/ e (E:0) (80 + (K(z) f(€)) D) detdrde + / e (6 0) ooy

R} xRy xR Ry xR
(2.27)
~ (ky — kr) / () dpoydide = —2 / b dme(z, ).
ExRe R xRy xRe
/ e (E50)] (80 + (k) 1'(€))s) bdtdrde + / e (6, 0)| byioyddt
R;ermeg Ry xRe
(2.28)
~ (ky — kg) / )by dide = —2 / b dge(z, £,).
ExRe Ry xRy xRe
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2.1. Discontinuous flux conservation laws

Multiplication of by (—2) and adding and , one obtains
[ (el + bl 0] = 26 w)xel€s0) (0 -+ (ko) (€))02) dedd

R xRy xRe

+ / (e )]+ Pxe( 00)] — 2xe (€ 0) e (6 v0) ) byacoy darde

RI XRg

9k — kr) / ()b gamy dide

EXR&

T 2(ky — kr) / (xe(E:0) + Xe(£:0)) F(€)bromcy dtdE < 0.

ZXRg

Using (2.24)), this becomes

/ (Ixe (& u)l + [xe(&v)] = 2xe (& u)xe(&0)) (O + (k(x) f'(£))0x) ¢ dtduzd

R xRq xR

+ / (e (€5 00} + e (€ v0) | — 2 (€ )X (6 v0) ) beoy dde < 0.

Rz XRg

where one can already observe that the second term vanishes as soon as vy = uyg.
Droppping regularization and using the special form of the x indicator function, one
recovers

d

dt / IX(&u) = x(&v)| dodg <0

RIXRg
which, due to (2.20]), (2.21), implies
d
— [ |u(t,z) —v(t,z)| dz < 0.
dt Jr

O]

Remark 2.1.12. In the continuous case, the kinetic entropy equation follows directly
from the Kruzkov entropy inequality and reduces the space of weak solutions to the ones
satisfying the L'-contraction. Thus one would not expect the necessity for another con-

dition, such that it should be possible to show, that follows from or .
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2. Interfaces, pointwise disturbances and L'-dissipativity

2.2. The notion of germs

As the previous sections have shown, there have been many approaches to a physically
relevant notion of (entropy) solution to discontinuous flux type problems like over
the last decades. The underlying idea to focus on entropy admissibility originally brought
up by Kruzkov and well understood in the context of continuous flux problems, has ul-
timately led to the consideration of the divided problem , , such that every
region could be treated as a continuous flux problem in the sense of Kruzkov and
the study of the behavior of solutions across the interfaces dividing the original problem.
Generalizing existing studies, compare [1} 2, 12| [15, 17, 26, 54, [75], B. Andreianov, K.H.
Karlsen and N.H. Risebro introduced a theory revolving around characterizing admis-
sible, dissipative behavior at the interface [8] by comparison to so called elementary
solutions, which are piece-wise constant stationary solutions to the original discontinu-
ous flux problem.

This section summarizes the existing theory and results, giving some explanatory exam-
ples and leads towards the extension of the theory to non-conservative coupling, which
is the case needed for the particle-fluid interaction in the second part of this work.

2.2.1. Germ based entropy solutions and L'-dissipative germs

Most of the work to define dissipative behavior at an interface has already been done
by applying a centered testfunction on the Kruzkov entropy formulations stated in the
Definitions 2.1.7], and [2.1.5] Knowing the behavior leading to dissipativity, the definition
of a set capturing all piece-wise constant stationary solutions following this behavior at
the interface follows directly.

Definition 2.2.1. Any set G € R? is called a dissipative (or L' D) germ,
if for all (up,ugr), (vp,vR) € G

Pr(ur,vr) — ®r(ur,vr) < 0 (2.29)

holds for Kruzkov entropy fluzes ®1, r(a,b) = sgn(a — b)(kr,rf(a) — kr,rf(b)), compare
section [L.3.

Remark 2.2.2. This definition can of course also be done for other discontinuous fluzes,
such that more generally ®1, g(a,b) = sgn(a — b)(fr.r(a) — fr,r(b)). However, the defi-
nition above stays with the introduced model .

Using this set, one is able to define entropy admissible solutions, by applying Kruzkov
entropy admissibility away from the interface and the dissipative behavior at the inter-
face. Using the notion of admissiblity inspired by the continuous flux problems, one
obtains the following new definition.
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2.2. The notion of germs

Definition 2.2.3. A function u € L™(R, xR) admitting strong traces v*(u) in {x = 0}
is a weak entropy solution to problem if and only if it satisfies the following two
properties:

1. For all k € R and all non-negative test functions ¢ € C3°(Ry x R) with ¢(t,0) =0
for allt > 0, it satisfies

/ / lu(t, x) — k|Owp(t, x)dxdt +/ lup(z) — K|p(0, z)dz
R+ JR R

v /R ) /R B(ut, ), K, 2)Dpd(t, 2)dzdt 2(0 |
2.30

2. The traces of u satisfy
forae. t >0, (v (u)(t),y"(v)(t)) €G.

Remark 2.2.4. Comparing this definition to the original definition inspired by Kruzkov,
definition|2.1.1), it is at first glimpse not easy to see that both are very close. The entropy
inequality is much easier to treat, giving the L' contraction property following the
lines of section[I.3. However, it is necessary to explicitly state another condition, which
was directly implied by the entropy inequality in deﬁnition. Another advantage
of definition|2.2.5is the possibility of changing the search criteria for dissipative behavior,
by simply changing the set of admissible jumps. The model considered in the second part
of this work is an exzample of a very explicit construction of an admissibility (L'D) germ.

A second definition was also introduced in [§], which has the distinct advantage of not
directly using the traces v*(u) towards the interface. It has proven very useful for results
on well-posedness of measure valued solutions, compare [39, 14, [7], where existence of
these traces can not easily be assumed and is based on the adapted Kruzkov entropies
and a penalization term in the entropy inequality.

Definition 2.2.5. A function u € L*°(Ry x R) is a weak entropy solution to problem
if, given an L' D germ G, there exists a constant M > 0, such that for all (ar,ar) €
R? and all non-negative test functions ¢ € C§°(Ry x R), it satisfies

/ / lult, ) — a(2)| O (t, ) dwdt + / () — a(2)]6(0, z)dz
R+ JR R

+ / / B(ult, 2), a(z),2)0s6(t, x)dadt + M [ dist((az,ar), G)(t, 0)dt > 0
R+ JR R+

, <0 , : . . .
a7 and dist(-,-) is the standard Euclidean distance in R2.

ar, x>0

where a(x) = {
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2. Interfaces, pointwise disturbances and L'-dissipativity

As the wording already suggests, both definitions are equivalent if the same L'D
germ G is chosen, which was proven in [8] for the case of conservative problems, but
can be extended to germs representing non-conservative coupling. The proof will be
included in section see also [5], [7]. Being the whole point of interest, both definitions
imply uniqueness of the considered admissible solutions, which is stated in the following
theorem. Although this theorem was proven in [§], a short proof is included in this work.

Theorem 2.2.6. Given an initial value problem and ug € L>®(R), solutions ad-
missible in the sense of deﬁnition 07" are unique and satisfy the L' contraction
property [1.8

Proof. Given two solutions u, v, admissible in the sense of definition [2.2.3] one starts
from the entropy inequality . The method used to obtain the Kato inequality
in the continuous case, i.e. doubling of variables, can be applied in the exact same
manner provided that the testfunction ¢ vanishes in a neighborhood of {z = 0}. Af-
ter reintroducing generalized testfunctions, as in the proof of theorem [2.1.2] and using
®(u, K, ) = k(z)®(u, k) on obtains (2.10). In order to further follow the steps to obtain
the Kato inequality, all that needs to be satisfied is

kr®(y" (w), v (1)) — k(7 (), 7™ (1)) < 0.

which is exactly the dissipativity of G. Thus definition [2.2.3] implies uniqueness and the
L'-contraction property.

Now considering definition Applying the same method as before, one obtains as
interface condition the following properties of dist((a L,aR), Q)E|

(ar,ar) €G = dist((aL,aR),g) =0
V(uL,uR) € RQ, (aL,aR) €eg => kRé(uR,aR) — kLCD(uL,aL) < dist((aL,aR),g)

which follow as G is an LD germ. O

Example 4. It might be interesting to note, that the theory of germs could also be
applied to the continuous flux case, where it would just recover the good behavior across
shockwaves, i.e. the Lax entropy condition, see for example [40]. As stationary solutions
in this case are simply constants a € R, the corresponding dissipative germ is of the
form

G°={(a,a) € R2} U{(ar,ar), flar) = f(ar) and ag > ar }.

The first part is dictated by the stationary solutions, the second part ensuring the con-
servation and dissipativity across stationary shockwaves. Entropy solutions to problems
involving continuous flux functions can also be defined by demanding that all traces
7F(u) of towards every point in space are in the set G¢ above.

Remark 2.2.7. The notion of germ can be extended to an interface coupling changing
in time, resulting in time-dependent germs. An example of such an extension is done in
the second part of this work, where due to merging or splitting of particles, the friction
constant A can change, which changes the corresponding admissibility germ Gy.

2A more in-depth study of this term and the proof of these properties can be found in [§].
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2.2. The notion of germs

2.2.2. Definite germs

Analysis of L'D germs, see [8, [I1], as well as consideration of the continuous flux case,
where the germ is composed of solutions that satisfy the Rankine-Hugoniot condition
and are entropy admissible, revealed that germs are often composed of subsets, which
might be interesting to study. This led to the introduction of so called definite germs,
sets which capture one or multiple key properties of dissipative germs, but lead to unique
solutions if and only if they fully coincide with their corresponding L'D germ.

Definition 2.2.8. Let G be a dissipative germ in the sense of definition [2.2.1. A set
Go C G 1is called a definite germ with respect to G, if the set of pairs (ur,ur), such that

holds for all (vp,vRr) € Go, is G.
The following lemma about non-uniqueness of definite germs holds true.

Lemma 2.2.9. Let G be a dissipative germ in the sense of definition and Go a
definite germ in the sense of definition[2.2.8 Then, any set G1, such that Gy C G C G

is a definite germ.

Proof. To prove the lemma, every such set G; needs to require the whole germ G, such
that holds for every pair (ur,ur) € Gi. This is obviously true, as the subset
Go C G; already needs the whole germ G, which is unique. Therefore every such set Gy
is a definite germ. O

Example 4 (extended). To give an example for a definite germ, it is sufficient to
consider the continuous flux problem again, returning to Example 4. Taking the set

G5 = {(a,a) € R?}, and checking relation (2.29) gives
®(ug,a) — ®(ug,a) < 0.

This condition is exactly what can be derived by the Kruzkov formulation, and is
therefore true if and only if the pair of traces (ur,ur) is entropy admissible, namely
(ur,ugr) € G° As a result, G§ is a definite germ with respect to G°.

2.2.3. Maximal germs

It is well known in the context of conservation laws, that problems of type , without
specification on the flux function, i.e. generally considering fluxes F'(u,z), sometimes
generate multiple L'-contractive semigroups, see [2, 1, 8]. Therefore one would not nec-
essarily expect for L'D germs to be unique, and, as proven in [§], they aren’t. This is
not necessarily a bad thing, as multiple L' D germs can correspond to different physical
interpretations, but in order to clarify, the notion of maximal (L'D) germ was intro-
duced.

Definition 2.2.10. A dissipative (L'D) germ G* is called a maximal (L*D) germ, if
there exists mo other dissipative germ G, such that G* C G. If there exists a dissipative
germ gd, such that G C G*, then G* is called mazimal (LID) extension of ga.
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2. Interfaces, pointwise disturbances and L'-dissipativity

Example 4 (extended). Clearly, as other interface couplings are ruled out by the
Kruzkov entropy approach (and Rankine-Hugoniot condition), the germ G¢ is a maxi-
mal germ.

More examples of germs corresponding to known admissibility criteria can be found in
[8], for example the Gelfand germ, which corresponds to the vanishing viscosity limit of a
continuous flux problem, germs for the cases of increasing surjective and monotone fluxes
and the germ corresponding to the Karlsen-Risebro-Towers entropy condition, which
introduced a crossing condition for general discontinuous fluxes, see [54, [55] [75], [76].

2.2.4. Non-conservative coupling

As mentioned before, it is possible to use the notion of germs not only for discontinuous
flux type problems, but also for interfaces where conservation might not hold for different
reasons. The model of fluid-particle interaction considered in the second part of this
work is one of the first examples for this result, where a source term corresponding to
the particles creates an interface not so different to the ones created by a jump in the
flux function, compare [10} [60]. This example will be discussed in chapter 4, which is
why we focus on another example here, which corresponds to road traffic with a point
constraint and was introduced in [30], compare also [5].

The model problem is a typical constrained traffic model

O+ Oz f(u) =0, with constraint  f(u)(¢,0) < F(t)

with flux f(0) = 0 = f(1), f nonnegative, f € Lip(R), such that upax := arg max f.
Choosing 0 < up < 1 and F € [0, F(umax)], it is possible to define entropy admissibility
using the notion of germs. The admissible points Br < umaxy < Ap to jump at the
F-level set of f characterize the germ, thus

G(t) = {(Apw), Br@) }

and one can compute the maximal extension of G(t) by allowing for other dissipative
jumps to obtain

Gt)* =G(t)U{(ar,ar) € R*: f(ar,r) < F and ar, < ar}

Defining entropy solutions to be Kruzkov entropy solutions u to the continuous flux
problem with constraint on the traces

for a.e. t > 0, (’y_(u)(t),’fr(u)(t)) € g(t)",

uniqueness and L'-contraction can be shown almost classically following the ideas of the
proofs of the previous section. In fact, it is easy to see, that all stationary solutions
jumping below the F-level set at the interface are Kruzkov solutions of the continuous
flux problem without constraint.
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2.3. Equivalency and comparison of different entropy formulations

2.3. Equivalency and comparison of different
entropy formulations

After deriving several viewpoints on entropy admissibility for solutions of discontinuous
flux conservation laws in the previous sections, this section summarizes and compares
the results. Equivalency of the different notions is not direct and they bear different
advantages connected to analysis, complexity of proofs and assumptions needed for ex-

ample in the presence of measure valued solutions. The following definition summarizes
the different entropy admissibility conditions.

Definition 2.3.1. Given ug € L*®(R). A function u is called weak entropy solution

to the initial value problem (2.9), if it is a weak solution to satisfying one of the
following conditions

1. Classical Kruzkov approach

/R+ /R lu(t, =) — /<c|8t¢(t,a:)da;dt+/ lug(x) — k|g(0, z)dx
/ / (u, K)Oppdadt + |k, — kR|/ f(k)o(t,0)dt >0
R+

for all testfunctions ¢ € CP(RT x R), all k € R with u admitting traces
v (u) towards the interface.

2. Adapted Kruzkov approach

/ / ult, z) — a(2)| O (t, x)dwdt + / luo () — a(x)|6(0, z)dx
Rt JR R

+/ /@(u,a,m)@wgbda}dt >0
R+ JR

for all testfunctions ¢ € C§°(RT x R) and all a(x) = aplyz<o + aglzso defined by
2.77).

3. Germ based admissibility using traces

/ / u(t, z) — k|06 (t, 2)dadt + / o (x) — k|60, )da
R+ JR R
—|—/R+/R<I>(u,ﬁ,m)8xgb(t,x)dmdt >0

for all k € R, t > 0, all non-negative test functions ¢ € C§°(R* x R) with
¢(t,0) = 0 and the traces of u satisfy for a.e. t >0: (v~ (u)(t),7"(u)(t)) € G.
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2. Interfaces, pointwise disturbances and L'-dissipativity

4. Germ based admissibility with penalization term
if there exists a constant M > 0, such that for all (ar,ar) € R? and all non-
negative test functions ¢ € C3°(Ry x R) it satisfies

/ / u(t, 2) — ()| Ot @)dwdt + / o (2) — a(2)]6(0, )dz
R+ JR R

+/ / D (u, a(x), z)0z¢(t, x)dxdt + M dist((ar,ar),G)o(t,0)dt > 0
R+ JR R+

where a(x) = arly<o + arlz>o-

5. Kinetic entropy admissibility
if there exists a monnegative bounded measure m(t,z,&) such that for all & € R
and all testfunctions ¢ € C(RT x R, x Re)

/ (€ w) (81 + (k(2)f(€)) D) & dtdde + / (€ 10) ooy e

R xRy xR Ro xR

~ (kr — k) / F©)pamoydide = / Be dm(z, ).

ExRe R xRy xRe
with x(&u(0,x)) = x(&up) and X = {0} x RT the line of the interface.

Reviewing the differences, there are a couple of things to notice. The first formulation,
using classical Kruzkov entropies, was the first approach, introduced in [75], to discon-
tinuous flux conservation laws after the Kruzkov formulation turned out to be massively
useful in the continuous flux case. As shown in section [2.1.1], it allows for a uniqueness
proof, but there are some disadvantages. It drops the original idea of Kruzkov, which
was comparison to (trivial) stationary solutions, and the appearance of the resulting
interface term complicates computations. However, it allows for x to be treated as a
new variable, opening the possibility to derive the kinetic entropy formulation 5.

The kinetic approach to linearize the equation, even though offering simple alternatives
for the proofs of many results in the continuous case, enabling tools like regularization,
compare [32] [68], has proven to be difficult to treat in the discontinuous flux case, com-
pare [13, [14]. It seems to be advantageous when dealing with measure valued solutions,
as the existence of traces towards the interface on the kinetic level holds true even for
functions with very low regularity.

The adapted Kruzkov formulation 2 extends the idea of Kruzkov, but as it makes it
necessary to study left and right traces at the interface anyway and embedding it in the
much more general framework of germs even holds some simplifications, it is often easier
to directly define the corresponding admissibility germ moving to formulations 3 and 4.

The germ based formulations carry the distinct advantage of the easiest way to con-
sider the problem and prove uniqueness. Also, as was demonstrated in section and
can also be seen following the specific problem in chapter [3| the theory extends di-
rectly to constrained flux, source-term and other non-conservative problems, compare
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2.3. Equivalency and comparison of different entropy formulations

[5L 10L [30% 54, B8, 60k [75] [76]. The formulation with the penalization also proves very
useful for analysis on convergence of approximated solutions, as the germ is directly
embedded in the formulation, compare section or [I1].

Regarding equivalency of the different formulations, the following theorem can be
proven, following mostly the lines of [11].

Theorem 2.3.2. The notions of entropy admissibility regarding solutions of by
formulations 2 — 4 are equivalent.

Proof. The structure of the proof will be to show 2. = 3. = 4. = 2.,
starting with formulation 2 = formulation 3.
Thus the starting point is the entropy inequality given in formulation 2 with the addi-

tional condition for the traces. It follows directly by that (ar,ar) € G. Clearly,
compare section the Kruzkov inequality is implied left and right of the interface.
Choosing a testfunction with compact support in a neighborhood of {x = 0}, after drop-
ping regularization, such that the testfunction becomes a delta distribution, the interface
term is obtained:

Wonar)€Gs [ (207 @ha) - (0 Weam)odtz 0. (231)
R
Comparing this again to , it follows that also (v~ (u),y"(u)) € G.

The next step is to show formulation 3 = formulation 4.
Given (cr,cr) € R? instead of (cr, cr) € G in (2.31)), taking the closest pair (br,,bg) € G
to (er,cr), then by computation

Dy (w),er) = B(y" (u). ep) < Dy (w).br) — B(v (u). br)
~ @07, e1) = @ (W), er) = @ (w),br) + (v (u) br)|.

The first term of the right side is negative by ([2.14]) and choosing a constant
M (|v*(u)l, |b.gr|, |cL.r]) large enough, the second term is controlled by
M dist((cL, cr), (br, bR)), which corresponds, due to the choice of (br,bg) exactly to

M dist((cL,cR),g).

It remains to show formulation 4 = formulation 2.

First of all notice that the solutions of [4] satisfy the entropy inequality of formulation
2, because obviously M > 0 and dist((ar,ar),G) > 0. To prove that the additional
condition of formulation 2 holds, one uses again a testfunction with compact support
around {x = 0}, to obtain

/ (®(v~ (W)(t),ar) = (v (u)(t), ar))o(t,0)dt > —M | dist((ar,ar),G))d(t,0)dt
R+ R+

Now one takes (ar,ar) € G obtaining the desired inequality

D(y~(w)(t),ar) — (v (u)(t),ar) > 0, ie. (2.14). O
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2. Interfaces, pointwise disturbances and L'-dissipativity

Remark 2.3.3. Notice that it was not possible so far to clarify if formulations 1 and
2 are equivalent, compare [12, [14]. Clearly both select a unique dissipative solution,
meaning the interface coupling defined by the formulations are L'D germs, however, it
is not clear if they coincide or if one of them is maximal. FEquivalency of the kinetic
formulation in the case of discontinuous flux problems would be very interesting however,
as the way the kinetic formulation derives from the Kruzkov formulation and the fact
that it does not make use of the traces of the original solution make it very attractive for
dealing with gemeralized or measure valued solutions, where the other formulations can
not be used a priori.
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3. A model for fluid-particle
interaction

The third chapter and following part of this thesis contains the study of a model of
inviscid fluid-particle interaction. The model is particularly interesting as it is the first
fluid-solid interaction model considering entropy admissible solutions in the presence of
shockwaves and, as mentioned in the previous section, an example where well-posedness
can be achieved for a non-conservative, singular balance law using the notion of germs.
The model was originally introduced in [60] with a study of the Riemann problem for the
case of a single particle and extended to the Cauchy problem in [I0, IT]. Some numerical
results for the case of a single particle have been achieved in [4] [10].

The influence of the particle towards the fluid is achieved by a singular source term
and corresponds to friction between the fluid and the particle. While the particle could
be considered moving according to an ordinary differential equation, compare [60], it is
sufficient to demand certain dissipative behavior at the position of a particle in order to
study well-posedness of solutions to the fluid equation. This work builds on the initial
model in [60], where the fluid is modeled by the Burgers equation and the particles act
as a point-wise drag force.

In the first section of this chapter, the preceding results of [9, [10) 1T, 60] are summa-
rized, some of which will be used as building blocks for the results of the later sections.
This includes well-posedness of the Cauchy problem, L*>° and TV-bounds and a study
of the behavior of the fluid at the position of a particle. In section the existence and
uniqueness results are extended to the Riemann problem for an arbitrary, finite amount
of particles. A simplification for the study of the interface terms is shown, using a new
notion of generalized admissibility germ. In the special case of all particles drifting apart
with given, constant velocity, exact entropy solutions are computed for all possible initial
data. The interaction between the particles and corresponding germs gives the critical
information used in section to determine the change in the germs when particles
split or merge, which should clearly impact the friction coefficient.

Most of the analysis is done for the case of two particles, which contains most of the
difficulties to extend the model, with details on how to extend to an arbitrary number
N of particles in sections [3.2.4] and [3.3.8] Section extends the study to the Cauchy
problem for N particles, where admissibility and the behavior of the special germs is
discussed in sections and Then the main result of this work is stated, which
is well-posedness and an L*° bound for entropy solutions of the Cauchy problem in the
case of N particles, which is then proven in the remaining sections using an explicit con-
struction algorithm for existence, an approximation for the case of splitting or particles
and tools from chapter [2] as well as functional analysis and measure theory.
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3. A model for fluid-particle interaction

3.1. The model with a single particle

The model for interaction with a single particle was introduced in [60] with a study
of well-posedness of the Riemann problem and further studied in [I1], [10], where well-
posedness for generel Cauchy initial data, aswell as L°° and T'V bounds were proven.
This section summarizes the results of these papers. The model in the presence of a
single particle with friction constant A € R reads

O+ 0y (u®/2) = A(h(t) — ult, h(t))d(z — h(1)),

u(0,2) = up(z). (3.1)

There are multiple things to note. The source term is singular, and contains a non-
conservative product u(t, hi(t))é(x — h;i(t)). This problem was tackled in [I0] by a reg-
ularization of the particle, using a non-negative compactly supported density function
instead. However, an analysis of the behaviour of the fluid at the position of the particle
allows for a well-posedness proof considering the influence of the particle as a condition
on the behaviour of the fluid at a moving interface located at the particle position.
The influence of the source term is dictated by the friction constant A, leaving the Burg-
ers equation in the case A = 0, corresponding to no friction between the particle and the
fluid and a strictly decoupled problem with a wall-like boundary condition in the case
A — 00.

Remark 3.1.1. FEven though it is clearly desirable to also consider different equations
to govern the fluid in this model, for example FEulers equations or the Navier-Stokes
equations, so far, the Burgers equation seems the only model equipped with sufficient
results regarding well-posedness in order to study the notion of entropy admissibility and
interaction with shocks. The only results for the coupling with the Euler equations, for a
specific case of the Riemann problem, i.e. a fized particle, is [3]. Recent developments,
compare [22, 135, [74), [51], have led to a discussion within the community, if it is even
possible to sufficiently define admissible (dissipative) solutions to the Euler equations.

The first obstacle is to define entropy admissible solutions. The approach chosen in [60]
follows the ideas of section and therefore needs to define the behavior at the particle
induced interface in a physically meaningful (and dissipative) way. Following ideas of
[50, [73], they study a traveling wave at the position of the particle hA(t), determining
all possible solutions across the interface. Away from the interface, Kruzkov entropy
admissibility is sufficient, where for the study of the interface, Lax entropy condition
was used.

The following proposition describes the possible behavior of the fluid across the particle,
therefore giving the set of admissible left and right states, thus the germ, which is stated
below.
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3.1. The model with a single particle

Proposition 3.1.2. Let U1 (U, \,v) C R be the set defined by

{U - )} if U <,
U (U, \v) =4 20— T — \, 0] if v <U <wv+ A\ (3.2)
{U-XNYURv—-U-XN20—-U+\ ifU>v+\

Then the set defines dissipative behavior across the interface by a single particle.

Proof. The proof is done in [60] and we will only recreate the most important steps here.
One searches for solutions following the particle u¢(t,z) = U(x—h(t)). Restricting to the

neighborhood of the particle [, §] and regularizing, the equation of interest becomes

—h (&) (U) (&) + (U)?/2)'(€) = M () = U(€))(H)'(§) = 0

where the left trace towards the observed region is U¢(—§) = uz and H¢ is the regularized
delta distribution, i.e. the particle. Demanding entropy admissible jumps gives the
conditions at the interface

(U= h YU+ \H) =0, if U€ is smooth and
US(&5) +U(&y) = 2R (t) and US(&)) > U(&),  if U is discontinuous in &.

With these conditions, one obtains case-by-case with respect to the appearance of a
discontinuity that U¢(§) € U1 (Ur, A, h'(t)) and respectively for any Ur € U (Ur, A\, W' (t))
existence of a unique solution U¢ with U¢(§) = Ug. O

Therefore one can give the set of admissible traces, i.e. the corresponding germ.

Definition 3.1.3. The admissibility Germ G, C R? associated with the interface result-
ing from one particle is defined by

Gr={(co,cp) €ER* e —cy =AU {(co,es) ERy xRy =A< e +cy <A}

As the connection across the particle determined by this condition is unique, the germ
needs to be dissipative, which is rigorously written down in [I1] and following the theory
of [§], compare section this means the following proposition holds true.

Proposition 3.1.4. The Germ Gy is mazximal and dissipative, in the sense that
(cp.cr) € Ga(v) < [V(bL,bR) € Ga(v), ®(v;er,br) > ®(u; CR,bR)] :
with
®(u; a,b) := sgn(a — b)(a®/2 — b*/2) — v|a —b| (a,b € R).

Note that the entropy flux ® contains an interface term explicitly given by the form
of the source term and is obtained by the methods of section [2.1.1] using the form of the

germ Gy.
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3. A model for fluid-particle interaction

3.1.1. Definition of entropy solutions

With the behavior of the solution at the position of the particle known and the admis-
sibility germ G, defined, one can define entropy admissible solutions to problem
following the lines in [10].

Definition 3.1.5. Given ug € L, N > 0,h(t) € WL([0,T]). We call u € L= (R x
R) weak entropy solution to the Cauchy Problem , if it satisfies for all piecewise
constant functions c(t,x) and almost every time t

/ / (|lu — c|Orp + ®(u, c)0z¢) dtdx + / lup — c|o(0,x)dx > 0 (3.3)
R JR+ R+
with ¢ € C°(RT x R,R"), ¢(¢, h(t)) = 0, and additionally

(v~ (u(t, h(t)), v (u(t, h(t))) € Gx(t), for a.e. t € (0,T)

Note that in [I0], the second definition using a penalization term was also used, i.e.
definition [2.1.5| with G = G, which will be extended to the case of multiple particles in
section [3.3.3

3.1.2. Well-posedness and L*° bounds

This section summarizes the results of [9] 10} [1T], 60] regarding well-posedness of entropy
solutions. The proofs will again only briefly be sketched, fur further details, the reader
is referred to [I0]. The first theorem states the existence and uniqueness of entropy
solutions, as well as an L°°-bound.

Theorem 3.1.6. Given ug € L®(R) and h € WH°([0,T]), then there exists a unique
solution u of , entropy admissible in the sense of Definition . Moreover, u
satisfies

vt e (0,T) [u(t, )lloo < [Juolloo + A

Proof. The proof of uniqueness follows the ideas of the previous chapter and can also be
found in [I1] for the case of a fixed particle, i.e. h = 0. It is done by comparison of two
entropy admissible solutions u, v due to definition [3.1.5] Truncation around the particle
path using suitable testfunctions, as in the proof of theorem [2.1.2] gives at the interface

T T
/ /u—v|6tgbd:ndt—/ /@(u,v)@wgbdxdt
o Jr o Jr
T

< [ (B0 (e h0). 7 (00t h(0)) = (07 (e, hle)). 7™ (o8 ) iy

0

where the entropy flux ®(h/(t),u,v) = ®(u,v) — h'(t)|u — v| was used, and the term on
the right side of the inequality turns out to be strictly non-positive, as it corresponds to
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3.1. The model with a single particle

the dissipativity of the germ, compare Proposition Thus the inequality is exactly
the Kato inequality, giving uniqueness following the classical arguments introduced in
section [LL3l

The existence result is reached by approximation. In [I1], existence of entropy solutions
to problem was shown under the constraint of a piece-wise affine particle path h(t)
using a well-balanced finite volume scheme. Therefore, after approximating h(t) by
a series of piece-wise affine paths, existence of entropy solutions to the approximated
problem can be deduced. The L bound is proven in [10] for the approximated problem
as well, using the change of variables v(t,y) = u(t,y + Vit) — V;, where Vj is given
by the approximation of the particle path hj(t) = Zan:1 Vi" Lgn-14n(t). Using strong
compactness results derived in [62] [67], one can pass to the limit and obtain the (unique)
entropy solution. O

The second result of [10] is the BV control of entropy solutions, which is stated in the
following theorem.

Theorem 3.1.7. Given ug € BV(R), h € W1>([0,T]), b’ € BV([0,T]). The unique
entropy solution u of belongs to L>=([0,T]; BV(R)) and satisfies

TV u(t,") < TVug+ 2dist<(u0(0_), u0(0+)),gk(h'(0))> +ATVjoqh'. (3.4)

Proof. The proof is based on numerical analysis using the method of wave front-tracking
introduced by Holden and Risebro in [49]. For details on the proof, the reader is referred
to the Appendix of [10]. The resulting estimate is

sup TVu(t,) < TVuo+2dist((u0(()_),uo(0+)),g,\).
te(0,T]

This can be directly applied for the approximated problem with piece-wise affine path.
Applying this estimate on each region in time [t?_l, t/'] where the approximated particle

path is straight, a penalization term of the form dist ((u(h*), u(h*)) , g,\) is added when-

ever a new Riemann problem is solved due to the change in particle velocity. Adding up
over the whole time span gives (3.4)). O
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3. A model for fluid-particle interaction

3.2. The Riemann Problem for multiple particles

In this section the Riemann problem in the presence of multiple particles will be dis-
cussed. Riemann problems are a very important simplification of problems in fluid
mechanics and theory of partial differential equations in general, as they often pro-
vide critical information about the behaviour of waves. There are many examples, like
[49, 75, [76], where the solution of the Riemann problem acts as a building block towards
proving existence of the Cauchy problem. In our case, although we will not use the solu-
tions of the Riemann problem to specifically construct solutions for the Cauchy problem
later, the study of the Riemann problem resolves the issue of how to define admissible
particles and will allow us to give a good admissibility criteria for entropy solutions
when particles merge or split. In addition, we are able to see some nice properties of the
solution at the position of the particles and introduce a new mathematical object, called
generalized Germ, which allows to give a very compact formulation of the problem and
is easily extended to an arbitrary number of particles.

Most of the analysis will be done for the case of two particles and later extended to
arbitrarily many particles.

3.2.1. The model problem

We consider the following Riemann Problem for multiple particles. The model writes

N
O+ Ou(u?/2) = Y Nl — ult, hi(1))6,py, N € N§
i=1
f <
u(0,2) = up(z) := {“L’ ore =t (3.5)
ugr, forxz >0,
hi(0) = 0.
hi(t) = v; = constant Vi € [1, N]

and we assume the particle speeds to be ordered, such that without loss of generality
v; < viy1 and

u(x,t) the velocity of the fluid

hi(t) the path of the i-th particle

v; the velocity of the i-th particle

A a friction constant corresponding to the i-th particles.
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3.2. The Riemann Problem for multiple particles

3.2.2. Generalized Germs

We search for stationary solutions to the Riemann Problem with two particles initially
located at the origin and moving with given, constant velocities v1 and vo. Note that left
of the first and right of the second particle, the fluid is governed by the Burgers equation
and allows for constant states as stationary solutions in these regions. We derive the
possible connections over the two particles and the region in between them from the
analysis of the behaviour of the solution across a single particle. Given a left state ur,
we recall that the following set of states describes the possible right states that can be
connected across a single particle, compare section

{uL — )\} if uyp, <w,
Ui (ur, A\, v) = ¢ [2v0 —up — A, ] ifo<up <v+ A (4.2)
{ur, = A\YU[20 —up — A\, 20 —ur + A] ifur >v+ A\

This set defines the Germ covering the connection across a single particle, and the
connection between the sets is stated in the following definition. From here on, the left
and right traces of the solution at the position of the particle will be called u~ and u*
respectivly.

Definition 3.2.1. A couple of traces at the position of a single particle is called admis-
sible in the sense of Germs, i.e. (u™,u™) € Gy, if u™ € Uy(u™, \,v).

As the selection of solutions using this Germ is unique, which is proven in [60], the
Germ G, is, by definition, dissipative.

In order to give an equivalent condition for the interface created by two particles,
one has not only to consider the jumps at the position of the particles, but also the
possibility of a simple wave in the region between the two particles. The additional
condition (besides the Rankine-Hugoniot condition) for waves in between the particles
is, that its speed must also lie in between the particles (as they are located at the same
position initially).

Given a state up, the following states can be connected to the right by waves with
speed less than v;.

Proposition 3.2.2. Let U_(ur,v1) C R be the set defined by

(*OO’Ul] Zf ur < v,

Z/[_(’U,L,Ul) = { (36)

{ur} U (=00,2v; —ur] if up > v1.

Then U—_(ur,v1) describes the states that can be connected to ur by a simple wave with
speed vgw < V1.

Proof. The proof is simple and based upon the Rankine-Hugoniot condition (1.4]), which
restricts the possible states that can be connected through a shockwave, as vgy < v1.
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3. A model for fluid-particle interaction

The case of u;, < v allows for shockwaves to reach all states u < uy. It is easy to check
that for those waves the wavespeeds vsw < v; and the entropy admissibility condition
is satisfied. By rarefaction waves, all states u € [ur,v1] can be reached. v is the
limit, as otherwise, the wavespeed of the rarefaction would exceed the velocity of the
particle, therefore not being located before the particle.

In the case of uj, > v1, shockwaves are somewhat more restricted. To match the desired
wavespeed vsw < v1, we can only connect to states u < 2v; —uy. Rarefaction waves are
not possible at all, as the speed of their fan would begin at uy;, > v;. Finally, we recover
{ur} as a single possible state in the event of no wave.

Summing up, recover exactly U_(up,v1). O

Given a state up, the following states can be connected to the left by waves with
speed greater than vy

Proposition 3.2.3. Let Ui (ug,v2) C R be the set defined by

[U% OO) Zf UR > V2,

, (3.7)
{ur} U (2vy —ugr,00) if up < va.

Ui (ur,v2) = {

Then U_(ug,v2) describes the states that can be connected to ug to the left by a simple
wave with speed vgw > vs.

Proof. The proof works the same way as for the previous proposition.

We start with up > vo. As the wavespeed of possible shockwaves must now exceed o,
every state u > ugr can be connected to ugr by a shockwave. The rarefaction waves are
restricted by vrw > ve, and can therefore only connect to states u € [va, ug|.

In the second case up < ve, rarefaction waves are again not possible, as the speed of the
edge of their fan would be ur < v2. Shockwaves must be fast enough, making it possible
to connect to any state u > 2ve — up. Lastly, there could be no wave at all, leaving the
state {ug}.

We recover exactly Uy (ug, v2). O

With these results, we can extend the idea of Germs to a connection across a whole
domain in the space of solutions. For two particles, we start by computing the set
Us(ur, A1, A2, v1,v2), which describes the admissible set of states , that can be connected
to a given state uy, across the fan created by two particles initially located at the origin
and moving with constant velocity.
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3.2. The Riemann Problem for multiple particles

Theorem 3.2.4. Let Us(up, A1, A2, v1,v2) C R be the set defined by

{uLf)q*)\Q} Z'quL<Ula
Uz (ur, A, v) = [201 —up — A1 — Ao, vo] if vi Sup < vy + A+ Ag,
{uL—)\l—)\Q}U[Q’Ul—uL—/\l—)\Q,QUQ—UL—F)\l-i-/\Q] if up > v + A1 + Ao

(3.8)

The set of states gives the good connections across the two particles and given Riemann
initial data (up,ug) for the problem with N = 2, the connection through the Germ

(ur,ur) € G2 & up € Us(ur, A, A2, v1,v2)
1S UNique.

Proof. The proof is done by a case-by-case study with respect to ur,v1,v2, A1, Ao and
the possible positions of shocks and rarefaction waves.

o uyr <.
The set of possible states after the interface corresponding to the first particle is
given by and in this case is just {ur, — A\1}. At the position of the particle,
there could be a stationary shockwave with speed v;. The only possible wave with
speed v; is not an entropy admissible shockwave, due to uyp — A1 < ur < v; and
therefore we stay at {ur, — A\1}. Now there is possibly a simple wave between the
two Germ-related interfaces. The only restriction besides the usual ones coming
from the Rankine-Hugoniot condition and entropy admissibility, is that the speed
of the wave vgy must be between v and vs. It is easy to check that a shockwave
is not possible due to the entropy condition and a rarefaction is also not possible,
because {uy, — A1} € [v1,v2] and the fan would go across the interfaces. Therefore
the only remaining connection is across the second particle, which gives, using

(3.2) again, {ur — A1 — A2}

® ujy, € {Ul,vl + )\1]

The set of states after the first interface, given by , is [2v1 —up — A1, v1 + A1)
Now this set can be connected by a shockwave with speed v; < o < v to the set
of states [2v; — ur, — A1, v1 + A1] (no wave or shock) and by a rarefaction wave to
the set of states [ur,vs] giving the overall set of possible states after the simple
wave of [2v; — ur, — A\, v2]. Using again for the second particle, we obtain as
the set of possible right states [2v1 —ur, — A; — A2, v2]. Note that states up to v
can only be recovered because of the special case that v was included in the set
before the interface (therefore ending up in the second case from (3.2)).

o ur € (v1 + A1, v2+ A —i—)\g]
For the set of states after the first particle, we obtain from the third case of ,
{ur, = M} U201 — up, — A,2v01 — ugp + A1]. By a simple wave, we reach the
set of states [2v1 — ur, — A1, v2 — A1] (shock or no wave) and [v,v9] (rarefaction
wave). Additionally, it could be that the state we have before the simple wave is
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3. A model for fluid-particle interaction

greater than vy. In this case, besides a shockwave, there could be no wave, giving
{ur, = A1}. Now we apply the last interface and obtain for the set of right states
[2v1 —up — A1 — A2, v2|. The single state {ur, — A1} also went inside this set, due
to ur, < vo + A1 + Ao.

ur, > vo + A+ Ag

For this last set of left states, the Germ for the first particle gives for the set of
intermediate states {ur, — A1} U[2v1 —up — A1, 2v1 —ur, + A1]. The second set can
be dealt with similar to before and gives the set of right states after the second
particle [2v; — up, — A1 — A2,2v9 — up + A\ + A2]. For {up — A} after the first
particle, there can be a shockwave, giving the set of states after the simple wave
of [2v1 —ur, + A1, 2v2 — up, + A1] which like before goes into the set of right states
[2v1 —ur — A1 — A2, 2v2 — ur, + A1 + A2] or no wave, which gives by the single
right state {ur, — A\ — A2}

And the form of the Germ G, follows as proposed. O

Remark 3.2.5. In contrary to the dissipative Germ Gy, which is a Germ in the classical
sense introduced by Andreianov, Karlsen and Risebro [8], where the left and right traces
are just connected by an interface, the new set Go stretches the dissipative connection
of the traces across a domain (in our case a cone given by the particles). This means,
additionally to the dissipativity of the generalized Germ Gs, we had to analyse the solution
inside this cone to ensure uniqueness of solutions.
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3.2. The Riemann Problem for multiple particles

3.2.3. Existence and exact solutions in the case of two particles

We consider the Riemann Problem (3.5) with two particles, i.e. N = 2. Now we
can give the exact solution for the Riemann Problem case-by-case with respect to
ur, R, V1, V2, A1, Ao. Purely for computational reasons, we assume the particle veloc-
ities are not too close compared to their friction, i.e. |va — v1| > A1 + Ao.

Hierarchy of the case-by-case study

o ifup < vy
— then if ug > v
— else if v1 < ugp < vy
—elseif 2u1 —up — A1 — Ao <up < vy
—elseifup <wvi —up — A1 — Ao
o elseif v1 <up <ve+ A+ A

— then if ug > vy

— else if v1 < ur < vy

else if 2u1 —up, — A1 — Ao < up < vy
—elseif up < 2v1 —up — A1 — Ao

o clse if uy, > vy + 2\
— then if up > up — A1 — A9 (case 9

—elseif 2ug —up, — A1 — Ao <up < up — A1 — Ay (case 10

else if 2v1 —up — A\ — Ao < up < 2vy —urp — A1 — Ay (case 11

)
)
)
—elseif up < 2v1 —up — A1 — Ao (case 12)

Some examples for the corresponding cases, can be found in the adjacent figures, see

Figure

1. ur <wvi,up > vo.
To obtain the state of the solution after the second particle, we construct the sets
after each possible wave and interface starting from a given left state uy < v;

Us(U-_(ur,v1), A1y A2, v1,v2) DU (uR, v2)
= Uz ((—00,v1), A1, A, 1, v2) N [v2,00)
= ((—o0,v1 — A1 — A2] U [v1 — A1 — Ag,v2]) N [vg, 00)
= (—00, v2] N [vg, 00)

= {v2}
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3. A model for fluid-particle interaction
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Due to theorem[3.2.4] we know that the connection across the germ is unique given
(ur,ur) and using (3.2)), (3.6]), (3.7)), the state before the first particle follows

U_(ur,v1) = {v1}

and the solution has one rarefaction wave where the speed of the fluid and the
speed of the particles match at the particle positions.

up < v, < UuR < V.

We proceed as before and obtain as state after the second particle

UQ(U_(UL,Ul),)\l,)\2,’1)1,’1)2) ﬂL{+(uR,v2)
= Us((—00,v1], A1, A2, v1,v2) N ({ur} U (202 — ug.00))
= (—o0,v2] N ({ur} U (2v3 — ug.c0))

= {ur}

giving the (unique) state before the first particle

U-_(ur,v1) = {v1}

and the solution has one shock at the position of the second particles, connecting
(max(ve,ur + A2),ur) and two rarefaction waves, one before the first particle,
connecting (ur,v1) and one after the first particle, connecting (vy, max(ve, up +

A2)).

.up < 1,201 —up — A1 — Ay < ur < v1.

We proceed as before and obtain as state after the second particle
Z/[Q(U, (UL; Ul)a )‘1a >\27 U1, /UZ) N M+(UR7 UQ)
= Uz ((—0o0,v1], A1, A2, v1,v2) N ({ur} U (202 — ug.00))
= (—o0,v2] N ({ur} U (2v2 — ur.c0))

= {ur}

giving the (unique) state before the first particle

U_(ur,v1) ={v1}

and the solution has a rarefaction between the particles, connecting (vy, ur + A2)
and a shock at the position of the second particle connecting (ur + A2, ug).

. uL<v1,uR<2vl—uL—/\1—)\2.

We proceed as before and obtain as state after the second particle

UQ(U_(UL,Ul),)\l,)\2,1)1,1)2) ﬂ?/{+(uR,v2)
= Uz ((—00,v1], A1, A2, v1,v2) N ({ur} U (2ug — ugr.00))
= (—o0,v2] N ({ur} U (202 — up.c0))

= {ur}



3.2. The Riemann Problem for multiple particles

giving the (unique) state before the first particle
U_(up,v1) =min({ur + A\ + A2}, v1)

and the solution has a simple wave before the first particle, connecting (ur, max(ur+
A1+ Ag,v1)) (shock if up + A1 + A2 > uy and a rarefaction if ugp + A\ + Ao <
ur), aswell as two shocks at the particle positions, connecting (min(ug + A1 +
A2,v1),ur + A2) and (ug + A2, uR).

() () a(t)  ha(t)

UR

ha(t)

s}Al

:})‘2 UR

Figure 3.1.: Sample solutions for the cases 1 (upper left), 2 (upper right), 3 (lower
left) and 4 (lower right).

5. vy <up < v+ A + Ao, up > vo.
We proceed as before and obtain as state after the second particle

UQ(L{_(UL,Ul), )\17 )\27 U1, ’U2) ﬁZ/l+(uR,v2)
= UQ({UL} U (_007 2u1 — UL), A1, A2, 01, UQ) N [’U2> OO)
= ({UL — A — )\2} @] [2?./1 —Up — A\ — )\2,112]) n [’UQ,OO)

= {v2}
giving the (unique) state before the first particle
U (ug,v1) = {ur}
and the solution has one shockwave at the first particle, connecting (ur,, max(vy, ur,—

A1)) and a rarefaction wave after the first particle, connecting (max(vi, ur—A1), v2)
where it matches the speed of the second particle at its position.
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3. A model for fluid-particle interaction

6. v1 <up <vy+ A+ Ao, v1 < ugr < vo.
We proceed as before and obtain as state after the second particle
Us(U-(ur,v1), A1, A2, v1,v2) NUL (uR, v2)
= Us({up} U (—00,2v1 —ur), A1, A2, v1,v2) N ({ur} U (2v3 — ug, 00))
= ({ur — A1 — X} U 201 —up — A\ — A2, v2]) N ({ur} U (202 — ug, 00))

= {ur}

giving the (unique) state before the first particle
U-(ug,v1) = {ur}

and the solution has one shockwave at the first particle, connecting (ur, max(vy, ug,—
A1)) and a simple wave after the first particle, connecting (max(vy, ur,—A1), max(vy, ur+
A2)) (either a rarefaction or shockwave, depending on uy, Z ug) and a shockwave

at the position of the second particle, connecting (max(ve, ur + A2), uR).

7. v1 <up <ve+ A+ A2, 201 —up, — A1 — A2 < up < v.
We proceed as before and obtain as state after the second particle
u2(u*(u[n Ul)a )‘la )\2>U1>U2) mqu(uRa 02)
= Us({up} U (—00,2v1 —ur), A1, A2, v1,v2) N ({ur} U (2v3 — ug, 00))
= ({ur — A1 — Ao} U201 —up — A\ — Ao, v2]) N ({ur} U (2u3 — ug, 00))

= {ur}

giving the (unique) state before the first particle

U_(ur,v1) = {ur}

and the solution has two shocks located at the particle interfaces connecting the
states (up,ur, — A1) and (ug + A2, ur) and one simple wave in the region between
the particles (either a shockwave or a rarefaction wave depending on if 2v; —uy, —
A1 — A2 2 uR), connecting (uy, — A1, ur + A2).

8. v1 <up < v+ A\ + Ao, up < 2v1 —up — A\ — Ao.
We proceed as before and obtain as state after the second particle

UQ(U_(UL,Ul),)\l,)\2,’1)1,1}2) ﬂU+(uR,UQ)
= Us({ur} U (—00,2v; —ur), A1, A2, v1,v2) N ({ur} U (202 — ug, 00))
= ({ur, — A1 — A} U201 —up — A\ — Ao, v2]) N ({ur} U (2u3 — ug, 00))

= {ur}
giving the (unique) state before the first particle

U_(ur,v1) = {ur + A1 + A2}
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3.2. The Riemann Problem for multiple particles

a(t) ha(1) ) ()
5})\2
) @) | [y, @ k()

Figure 3.2.: Sample solutions for the cases 5 (upper left), 6 (upper right), 7 (lower
left) and 8 (lower right).

ur Al{_é - mrm /\1{5
/\2{_ >\2{:
L om0 k@ | L, @k
Cha(t) o he() Cha(t) (D)
ur, Aif b

Figure 3.3.: Sample solutions for the cases 9 (upper left), 10 (upper right), 11
(lower left) and 12 (lower right).

and the solution has a shockwave before the first particle, connecting (up,upr +
A1 + A2) and two shocks located at the particle interfaces connecting the states
(urp + M\ + Ao, ur + A2) and (ugr + A2, uR).
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3. A model for fluid-particle interaction

9. ur, >wv9+ A + Ao, urp > ur, — A1 — Ao
We proceed as before and obtain as state after the second particle
Us(U-(ur,v1), A1, A2, v1,v2) NUL (uR, v2)

= Us({ur} U (—00,2v1 — ur], A1, A2, v1,v2) N [vg,00)
= ({’LLL — A= )\2} U (—OO, 2U9 —up — A1 — )\2]) N [7)2, OO)
= {ur — A1 — Ao}

giving the (unique) state before the first particle

U—(ur,v1) = {ur}

and the solution admits two shockwaves of height \i, Ao at the positions of the
particles and one rarefaction wave right of the second particle connecting (uy —

A1 — A2, uR).

10. up, > vg + A+ A9,209 —up, — Af — A9 < urp < up, — A1 — Ao
We proceed as before and obtain as state after the second particle
Uz (U-(ur,v1), A1, A2, v1,v2) NUL (uR, v2)
= UQ({UL} @] (—OO, 2u1 — UL}, A1, Aa, 1)1,1)2) N ({uR} @] (21}2 — UR, OO))
= ({UL - — )\2} U (—OO7 29 —up, — A\ — )\QD N ({UR} U (21)2 — UR, OO))
= {ur — A1 — A2}
giving the (unique) state before the first particle
U_(ur,v1) = {ur}

and the solution admits two shockwaves of height A1, Ao at the positions of the
particles followed by a shockwave after the second particle, connecting (uy, — A\; —
)\27 'LLR) .

11. up > v9 + A+ A9, 201 —up, — A — Ag < urp < 209 —uyp, — Ay — Ao
We proceed as before and obtain as state after the second particle
UQ(uf(uL,Ul),)\1,)\2,’01,02) ﬂZ/l+(uR,v2)
=Us({ur} U (—00,2v1 — ur], A1, A2, v1,v2) N ({ur} U (2u3 — ug, 00))
= ({UL — A — )\2} U [22}1 —ur — A1 — Ao, 2u —up + A\ + )\2]) N ({uR} U (2’02 — UR, OO))
= (—oo,v2] N ({ur} U (2v2 — ug,0))

= {ur}

giving the (unique) state before the first particle
U-(ug,v1) = {ur}
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3.2. The Riemann Problem for multiple particles

and the solution has two shocks at the particle positions, connecting (ur,ur, — A1)
und (ugr 4+ A2, ur) and a shock in between the particles, connecting (ur — A1, ug +

o).

12. up, > vo + A\ + Ao, up < 201 —up, — Ay — Ao
We proceed as before and obtain as state after the second particle

UQ(U—(UL7U1)7 A17 )\277)171)2) mu+(UR,U2)
= UQ({UL} U (—OO, 2v1 — uL), A1, Ao, U1, 1)2) N ({uR} U (21)2 — UR, OO))
= ({U,L — A = )\2} U [21)1 — U — A\ — /\2,7)2]) N ({uR} U (21)2 — UR, OO))

= {ur}

giving the (unique) state before the first particle
U,(UL,Ul) = {uR + A1+ )\2}

and the solution has a shockwave before the first particles, connecting (ur,up +
A1 + A2) and two shocks located at the particle interfaces connecting the states
(urp + M\ + Ao, ur + \2) and (ugr + A2, uR).

It is easy to check that the given cases cover all possible left and right states (ur,ug).

3.2.4. Well-posedness in the case of N particles

We now investigate the problem for an arbitrary number of N particles. Following our
previous analysis, we again rewrite the equations as

Opu+ 0x(u?/2) =0 for x # h;(t)

(u™(t, hi(t)), u™ (¢, hi(t))) € Gn, Vi e [1, N] (3.9)

In order to be able to make statements about the behaviour of the solution, we first
recall that by introducing the particles and thus pointwise disturbances, the set of sta-
tionary solutions changed drastically. In fact, constant states are no stationary solutions
anymore, and the best we can hope for is a solution with stationary states moving in
between the particles. The most intuitive solution of this type is

p

uy if x < hy(t)
U2 if hi(t) <z < ha(t)
u(t,z) =¢ (3.10)
uN if Anv—1(t) <z < hpn(t)
UN+1 if hy(t) <

where |u;41 —u;| = A Vi € [1, N].
It can be easily checked that this actually is a stationary solution to problem ({3.5).
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3. A model for fluid-particle interaction

This means however, that even without waves created by the movement of the fluid, we
should expect jumps of height |[ut —«~| < X\ at the position of the particles. In the
following analysis of the appearance of shockwaves, we discount those particle-induced
shockwaves, which are stationary with respect to the particle position and are compa-
rably small in size (depending on the friction constant). One could say we search for
waves built on the new basic solution .

In the following we refer to the left trace of the solution at the position of a shock with
Uy and the corresponding right trace with u;%ock’ and we denote the left and right
traces of the solution at the position of the i-th particle with u; := v~ (u(t, hi(?))),
ul =T (u(t, hi(t))) respectively. Furthermore, we will write > \; as short for Zi\; 1 i

Theorem 3.2.6. Any solution u(t,z) to problem admits at most one shock not
superpositioned with the particle paths hi(t). Furthermore, if there is a shockwave with
height |u; — uj| > X at the position of a particle, then there is no shockwave elsewhere,
meaning the jumps at the other particles are of heigth lu™ —ut| < \.

Proof. We perform a case-by-case study with respect to the position of a possible shock
and proof, that a second shock is not possible in every case.

e Let us assume the solution admits a shock before the first particle. By the nature

of the self-similar solution, the shock must travel slower than the first particle,
thus sghock < v1. By the Rankine-Hugoniot condition, the state right of the shock
is u;ﬁlock < 2v1 —uy, and if up, < vy, to be entropy admissible, we also have
uzilock <ur.
Note that by the analysis of the jump across a single particle, we have u™ < u~
and therefore uf < 2v; —up < v; Vi € [1,N]. Note further that for given u:r < v
there can neither be a rarefaction nor a shockwave, as both would violate the
condition v; < speed < wv;41 to be located between the particles. Therefore the
only possible state after the particles is uf\, = u; — NA. This means, recalling
the analysis of the jumps at the position of the particles , that the solution
admits only jumps of heigth A at the position of the particles. As a shockwave
after the last particle should be faster than the last particle, meaning vy < speed
and u} < vy by the previous analysis, there can not be an entropy admissible
shock after the last particle. Therefore the initial shock was the only one not
superpositioned with a particle.

e Let us assume that the solution admits a fluid induced shockwave at the position
of the i-th particle, meaning |u; — u;| > A. Using the previous case, we know
that there is no shockwave before that. Knowing that the jump at the position
of the i-th particle is bigger than A, it is easy to check by , that the state
after the i-th particle must be uj < v;. By the same arguments as before, neither
rarefaction nor shockwaves are possible between the following particles, and again
by it follows that uj =u; —A<vy; Vje [i + 1, N]. By the same arguments
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3.2. The Riemann Problem for multiple particles

as in the previous cases, there can’t be further shocks not superpositioned with a
particle and the jumps at the position of the particles are of height .

e Let us assume now that there is a shockwave somewhere between the i-th and
the i + 1-th particle. By the previous cases, this means that there can not be a
shockwave before, and the speed of the shock must be v; < speed < v;41. This
means, that u;, ; < v;11 and by it follows that u;r =u; — A< Vje
[i + 1, N]. By the same arguments as in the previous cases, there can’t be further
shocks not superpositioned with a particle and the jumps at the position of the
particles are of height .

e In the last case we have a shockwave after the last particle. The previous cases
show that there can’t be an entropy admissible shockwave before that.

O]

Using this theorem, we can see that the structure of the solution remains the same, if
we increase the number of particles. Now we extend the notion of generalized germs to
N particles in the following proposition.

Theorem 3.2.7. The generalized admissibility Germ Gy (v1,...,vn, Y. A\;) C R? asso-
ciated with the cone [hi(t), hn(t)] is given by

(up,uRr) € Gn < ur € Unv(ug,vr,... ,UN,Z)\i) with (3.11)
{ur = >N} if up, < vq,
Un = { [2v1 —ur — D Ni, vN] if v <up <oy + >N,

{urp = > NP U 201 —up — YN, 2o —up + > M| ifup > on + D)\
Using this theorem, we can again rewrite the problem as
Opu + 0, (u?/2) = 0 for x < hi(t)
Opu 4 9, (u?/2) = 0 for > hy(t) (3.12)
(uw(t, b1 (t)),u" (t,hn(2)) € Gn

Theorem 3.2.8. Weak entropy solutions u to problem , with admissibility Germ
gn are unique.

Proof. In the case of two particles, the proof of this theorem follows directly from our
analysis of all possible cases of the Riemann problem, having uniqueness in each of them.
As the problem for N particles can be rewritten in the form of a two particle problem
, the solution is unique outside of the fan created by the particles. In the case of
two particles, we already showed with theorem that the connection through the
fan is unique, given two unique left and right traces u; and u; The proof of uniqueness
inside the fan of N particles remains the same in structure, and we will not give a
detailed proof here, which would be very lenghty and not significantly different from the
proof for two particles. Instead, we refer to the uniqueness proof of the Cauchy-Problem
for N particles in the next section, which includes this case. O
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3. A model for fluid-particle interaction

The final result is the following existence theorem, which captures also the structure
of solutions including multiple particles.

Theorem 3.2.9. Given the Riemann Problem with N particles and the condition
for the interface Gy, there exists a self-similar solution u(t,x) for all t € [0,T],z € R.
In fact, the problem outside of the particle-fan [hi(t),hn(t)] can be considered a two
particle problem with Gy (v1, ..., un, > Ni) = Ga(vi, N, D A).

Proof. The proof of this theorem is already done by our previous analysis. Theorem [3.2.7
gives the generalized admissibility Germ to rewrite the problem as . If we compare
the generalized Germs Go and Gy , we clearly see the claimed correlation
between the two and N particle problem. Using this connection, the existence result
outside of the fan or particles extends from the case of two particles to the case of IV
particles. This gives us the required traces u; and u} to determine the exact solution
inside the fan using Gy . O
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3.3. Well-posedness of the Cauchy-problem for N particles

3.3. Well-posedness of the Cauchy-problem for N
particles

In this section we will analyse the Cauchy-problem. A good and natural notion of
entropy admissibility is extended from the model with one particle to the model with
finitely many particles. Existence and uniqueness of those entropy solutions, aswell as a
L*>-bound is shown. A good choice of admissible particles is developed, which extends
the analysis to the case of merging and splitting of particles.

3.3.1. Extension of the model to multiple particles

We consider an inviscid fluid with velocity u(¢, z) and a finite number of particles moving
inside. The fluid is modeled by the inviscid Burgers equation and the particles act as a
point-wise drag force on the fluid, namely X;(h}(t) — u(t, h;i(t)), where \; is the friction
constant and h;(t) the given path of the i-th particle. The Cauchy problem writes

Opu + 0z (u?/2) = Z i (R (t) — u(t, hi(t)d(z — hy(t)),
iEN(t) (3.13)

u(0, z) = uo(x)

with
(t,x) eRt xR
u(t, x) velocity of the one-dimensional fluid
hi(t) the given position of the i-th particle at time ¢
A the friction constant corresponding to the i-th particle
N(T) set of particles in [0,7] x R, with arbitrary, finite cardinality
N(t)CN the set of particles at a given time ¢

The non-conservative products u(t, h;(t))d(z — h;(t)) are again dealt with in the same
manner as in [10], i.e. by a regularization of the particles. However, an analysis of the
behaviour of the fluid at the position of the particle allows for a well-posedness proof
considering the influence of the particle as a condition on the behaviour of the fluid at
a moving interface located at the particle position.

The theory of this section extends the analysis of the fluid-solid interaction of [60, 9, 11
10], where the original model also includes coupling to an ordinary differential equation,
to the case of multiple particles. Models of this kind are of increasing interest theoret-
ically, cf. [19], aswell as in applications like trajectory tracking in traffic flow, cf. [36],
[37].

We proceed in the following way. In section the notion of admissible particle is
explained. In section we give an admissibility condition for the selection of phys-
ical shockwaves and therefore a definition of entropy solutions to the problem. After
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3. A model for fluid-particle interaction

that, section [3.3.4] states the main theorem, which is the well-posedness result for prob-

lem (3.13)) and a L* bound. Section to give the proof to this theorem, first
for the simplified case of only two particles at any given time, extending the result to

N particles in section where sections [3.3.5] [3.3.6] and [3.3.7] contain the building
blocks for the existence proof as well as the L™ bound and section |3.3.9] is devoted to
the uniqueness proof using almost classical Kruzkov-type arguments combined with the
notion of germs.

3.3.2. Admissible particles

As the model allows for a variety of particle interactions to be considered, one clearly
needs to specify what an admissible particle is. Certain conditions, like a finite speed
of particles, are both physically reasonable as well as needed for computational reasons.
This section contains the exact definition of the mathematical object that is considered
an admissible particle in the framework of this model.

Including splitting and merging of particles leads to the number of particles being a
time-dependant value, and therefore we want to recover some sort of conservation with
respect to the particles. In fact, a property of this kind is contained in the system by
the usage of interface admissibility, as discussed in section 1.2. Additionally, we do not
want to allow for particles to be created out of nothing or existing particles to vanish
inside the observed domain.

With those considerations in mind, we define the particle path of the i-th particle

hi(t) : [t},t7] — R with [t}, 7] C [0,T] is Lipschitz continuous (P1)

1771 1771

where ¢! describes the beginning point in time of the particle path and ¢? the correspond-
ing ending point. The Lipschitz continuity enforces the speed of a particle to remain
finite.

Next, as we do not want to allow for sudden creation or deletion of particles, we restrict
the starting point of a particle path to an arbitrary point at the initial time or the end-
point of another particle path. Respectivly we restrict the endpoints to the final time or
starting points of new particles.

Either t; = 0 or t; = t? s.t. there exists a j € [0,N]\ {i} with h(t}) = hj(t?) (P2)
Either t7 = T or 7 =t} s.t. there exists a j € [0,N]\ {i} with h;(t]) = h;(t]) (P3)

Let us continue by introducing some auxiliary sets.
The first set is the graph of the i-th particle, excluding starting and endpoint

Ci = {(t,hy), t € (t},12)}.

1771

The fourth admissibility condition for our particles is, that, excluding the starting and
endpoint of the particle paths, we do not allow for particle intersections.

an( U ¢)=0 (P4)

JE[LNN{4}
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3.3. Well-posedness of the Cauchy-problem for N particles

where we recall that N is the number of particles in the whole domain. For a given
problem, whenever two particle paths intersect, we define this point to be the endpoint
of those particle paths and consider everything after this collision point as new particles.
Finally, we have a conservation property regarding the influence of the particles towards
the fluid. This becomes particularly interesting whenever particles split or merge, as the
quesion about the relation between the friction of the new and the old particles naturally
appears. We define for a given point (¢, z) the sets of particles with starting or endpoint
(t,x) as

I (o) = {k| (he(8}) = 2) A (R = 1) }
Ih(ta) = {1 ] () =) A (6 =)}

and impose the following natural property, which corresponds to the stability preserving
behavior found in the analysis of the particle related interface in section [3.2.2

V(t,z) e Rt xR > = Y N (P5)

keI~ (t,x ) JELT(t,x)
Summarizing, we state the complete definition of admissible particles.

Definition 3.3.1 (admissible particles).
We say that (h(t),)\), A\ € R is an admissible particle to our model, if it satisfies

conditions - .

Remark 3.3.2. The definition of admissible particles corresponds to allowing particle
paths that define a mesh on the domain [0, T]|xR. Property 2 makes certain that whenever
two particles cross, the particles after the crossing are considered new particles. That way
particles never intersect except at the beginning or ending point of their paths. Property
3 is motivated by the goal to achieve stability for the case of two merging particles and
can be seen as a conservation of influence, given by the friction constants. Whenever
particles split or merge, the total friction disturbing the fluid remains the same. Finally,
properties 4 and 5 exclude the cases of particles that just appear or vanish inside the
domain, forcing the particle paths to either start at the end of another particle or at the
initial time and end at the beginning point of another particle or the finite time.

3.3.3. Definition of entropy solutions

Increasing the number of particles means that the behaviour of the fluid at each particle
is governed by an interface admissibility condition Gj(v;, A;) respectivly. Thus we are
able to define entropy admissible solutions to the problem as long as the particle paths
do not intersect using the notion of admissible particle-related jumps and the notion of
adapted Kruzkov entropies. These adaptions of the classical Kruzkov entropies, which
were already discussed in section [2.1.1] are not only able to be used in the presence of
discontinuous flux problems, but all problems involving pointwise disturbances.

Note that complicated particle interactions like merging, splitting or crossing might
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3. A model for fluid-particle interaction

change the number of particles N(t) as well as their order, such that the enumeration of
particles used so far is time dependent.

In the case of multiple particles, an additional notation is needed to properly define
the piecewise constant states for the adapted Kruzkov entropies, because the set N(¢),
containing the particles at a given time, is not numbered yet. To circumvene difficulties,
we define the mapping N (¢)(-)

N:N@) = [1,...,|N@®)]

such that A/ maps the particle numbers at a given time onto a numbered set, for example

N(T) : {123456 ...

N(t) : { 34 6...
N(t) o

12 3 ...

Remark 3.3.3. The mapping is obviously bijective and allows to give the numbered set
of particles at time t, which will be necessary to give a good definition of entropy solution.
The use of this notation is mainly restricted to this section, where it is needed to be able
to give the positions of the particles at any time t.

It is now possible to define adapted Kruzkov entropies with respect to the interfaces
located at the positions of the particles

n(u,c) = |u— ¢ adapted Kruzkov entropies

D(u,c) =sgn(u—c)(f(u) — f(c)) corresponding Kruzkov entropy fluxes

with the piecewise constant function

IN@)
e(t) = e1lipany iy} + 2 Gl <e<hyt o) (3.14)
=2 :
+ C|N(t)‘+1H{x>hN_1(t)(|N(t)\)}.
with ¢;j € R for all j € [1,...,|N(¢)| + 1] and 14 the indicator function of A.

Definition 3.3.4. Given ug € L, N(t) > 0,h;(t) € Wh*([0,T]) Vt € [0,T. We call
u € L®(RT x R) weak entropy solution to the Cauchy Problem , if for N(t) € N,
hi(t) the position and h.(t) the velocity of particle i, withi =1,..., N, u satisfies for all
piecewise constant functions c(t,x) and almost every time t

// |u — c|Orp + P(u, c)0y¢ dtdx + / lup — c|¢(0,x)dx > 0 (3.15)
with ¢ € C°(RT x R,RT), (¢, hi(t)) = 0, and additionally

(77 (u<t7 hi(t)))77+(u(t7 hz(t)))) S g)\i (t)v for a.e. t € (0, T)
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3.3. Well-posedness of the Cauchy-problem for N particles

where we denoted the left an right traces of u(t,x) at the position of the particles by
v~ (u(t, hi(t))), v (u(t, hi(t))) respectivly. Due to the nature of the Burgers equation,
these traces exist a priori, even for L initial data, cf [59] [77].

As we will make use of another, equivalent definition of entropy solution later, we
state it here and refer to section for the proof of equivalence.

Definition 3.3.5. Given ug € L™ and a number N € R of admissible particles in the
sense of definition |3.5.1. We call u € L>®(R* x R) weak entropy solution to problem
, if u is a weak solution to and satisfies almost everywhere in [0,T] x R

T
/ / lu — c(z,t)|0cp + P (u, c(z, 1)) 0 ¢) dtdz + / lug — ¢(x,0)|4(0, x)dz
0o Jr R
(3.16)

T
+M Y /0 dist((enr(r) i) > N (1) (+1) ) G ) Pla=ni(2) ds = 0
1EN(t)

for p € C®°(RT xR,RT), M > 0, and all piecewise constant functions c(t,z) of the form
3.77).

Remark 3.3.6. Note that whenever two or more particles are located at the same po-
sitton at a given time, the entropy admissibility condition is mot a meaningful
condition, as two different interface conditions are enforced at the same point in space.
In fact, it is more than likely, that the set of entropy solutions using this entropy condi-
tion is empty. However, this is not a problem for defining entropy solutions on the whole
space-time domain, because the condition is only enforced almost anywhere in time.

At this point one can also see the importance of N to be finite, forbidding an infinite
number of particle interactions. This ensures that the problem with defining entropy ad-
missibility for particles located at the same position remains a local problem and allows
for the given notion of entropy admissibility to be used.

If one were to tackle that problem, recalling the analysis of the Riemann Problem in
the previous section, it would be sensible to define a new interface condition at those
interaction points xy, using the germ Gy, with Ay, = Z{z’eN(T)|h,~(t)=x1} A

This germ makes sure that the interface condition really applies the drag of both particles,
and does not impose two (maybe contradictory) conditions at the same position.

Remark 3.3.7. The definition of entropy solution is done using the notion of Germs,
introduced in [§]. Furthermore the entropy condition can not be distinguished from an
entropy condition for a discontinuous flux problem with interfaces located at the parti-
cle positions hi(t), emphasizing the pointwise influence of the particles. In contrary to
discontinuous flux problems, in the case of particles, it is not possible to use classical
Kruzkov entropies because the pointwise disturbance can not easily be translated into a
part of the entropy fluz.
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3. A model for fluid-particle interaction

3.3.4. Main result

The main result of this section and this work is the well-posedness of entropy solutions
of the Cauchy Problem (3.13)) given an arbitrary, finite number of admissible particles.
The result is stated in here, while the rest of this section is devoted to the proof of this
theorem.

Theorem 3.3.8. Given initial data ug € L*°(R), the Cauchy problem with a
finite number N(T') of particles, admissible in the sense of , admits a unique
entropy solution u.

Additionally, every such entropy solution satisfies for every time t € [0,T]

lullpoe < Jluollze + D i
iEN(t)

Remark 3.3.9. In the case of a single particle, Andreianov, Lagoutiere, Seguin and
Takahashi were able to also show a bound in total variation on the constructed entropy
solutions [1(}]. Although it is possible to recover a bound in variation in the case of
splitting of a particles, as shown in section it was not possible to extend their result
in the presence of particle crossings or merging. In fact, it is rather unclear if such a
bound even exist in those cases, as it would be theoretically possible for shockwaves to
be reflected back and forth at an increasing rate between the particles approaching each
other.
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3.3.5. A time-stepping construction method and L*> bounds

We will prove existence of entropy admissible solutions, starting with the case where in a
given time interval the particle paths do not intersect. The cases of merging, splitting and
crossing are discussed in the following sections and the method of constructing solutions
is strongly based on the analysis done in this first case. Given initial data ug € L>(R)
and any finite time interval [0, T, such that h;(t) # h;(t) for all i # j € N,t € [0,T],
we divide the problem into several local problems and use the existence result for the
problem with a single particle from theorem [3.1.6)

Lemma 3.3.10. Given h € WH*°([0,T]) and ug € L>®(R), then there erists a unique
entropy admissible solution u of with N(t) = 1.

Remark 3.3.11. Note that from N(t) = 1 for all t € [0,T], due to conditions (P3),
and (P3), one can assume that also N(T) = 1. Although it would be admissible
to define two particles (hi,\1), (ha, \2) with t3 = t3 and hi(t}) = ha(t}), which means
the first particles path ends at the beginning point of the second particle path, but in this
case, one can simply define the two particles to be a single particle, as by , Al = Ao,

Several difficulties arise. Even though the behaviour of the fluid in the presence of a
single particle is known, each particle generates waves interfering with the other parti-
cles, creating domains of unknown behaviour. Additionally, the possibility of crossings,
merging and splitting of particles seem to destroy some of the nice properties that were
holding as long as only one particle was present, e.g. the global in time bound on the
total variation. One could imagine waves reflecting back and forth between two particle
paths.

The proof is done using an explicit construction algorithm based on the existence result
in the presence of a single particle, which we will present here for the case of two parti-
cles in case of no particle path intersections and at most two particles at the same time,
i.e. N(t) < 2, in the case of merging and splitting. It is proven in a later section, that
this can be easily extended to any finite number of particles by simply choosing a good
timestepping, creating domains where the following analysis applies locally.

At the same time, we will prove an L* bound , justifying the existence of a max-
imum speed of propagation, denoted L from here on, which, though a very natural
property of hyperbolic equations, needs to be checked in the presence of source terms.
In fact, our specific Burgers flux and the Lipschitz continuity of the particle paths (P1)
is sufficient to guarantee a maximum speed of propagation, which is also physically rea-
sonable. Both the L° bound as well as the existence of solutions are constructed using a
time-stepping, which ensures that the cones of influence of two particles don’t intersect
within the current timestep [¢!, #71].

We begin by introducing the following functions, which will bound solutions given
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3. A model for fluid-particle interaction

bounded initial data. Let cpin, cmax be defined by

Chyin, max for = € Q4 (t),t € [, ¢+1]
Cmin, max(t’ $) = Cr2nin, max for z € QZ(t)7t S [tza tH_l] (3'17)
C?nin, max for x € QB(t),t S [ti, ti+1]

(3.18)

with

such that for j = 1,2

j j+1
c]min, max C‘]min7 max + Aj
and & = inf w(t’ z), d . (t,x) = sup wu(tx) for
$EQk1 (t%) werQ (tz)

k = arg min { inf u(t', ), inf (u(ti,:v) — 1), inf (u(ti,ac) - A —X2)}

Jj=12,3 "ze z€Q2 €3
| = arg max { supu(t’, z), sup (u(t’,z) — A1), sup (w(t’,z) — A\ — Ao
j=1,273{m€§21 ( ’ )790692( ( ’ ) )’1693( ( ’ ) )}

We will now state the main result of this section, which is the existence in the case of
no particle interactions and an L° bound.

Lemma 3.3.12. Given ug € L>®(R) and given two particles (h1, A1), (he, A2), admissible

in the sense of , with h1(0) # ha(0), any solution u to problem with |N(t)] =
2 satisfies

2

ull oo < [luollzes + Y As. (3.19)
i=1

Lemma 3.3.13. Given any time t* € [0, T), there exists a time t'T! > t, such that given
problem with two particles, admissible in the sense of , non-intersecting in
the sense that hy(t) # ha(t) € [t',t"TY] and initial data u(t') € L°°(R), there erists a
solution u(t,z) € L ([t',t""!] x R), entropy admissible in the sense of .
Additionally, if u(t;, z) satisfies for all x € R

Cmm(ti,.%') < u(tiax) < Cmaz(ti,.l'),
then u(t, x) satisfies for all times t € [t '],z € R

cmin(ta QZ) < u(t,l') < cmlﬁ(t?x)? (320)
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3.3. Well-posedness of the Cauchy-problem for N particles

The last statement (3.20)) is actually a stronger result than the L* bound, as (3.19)
follows directly from (3.20]) as soon as it is established for all times ¢ € [0, T7].

Proof. To be able to make use of the existing results for the case of a single particle, we
choose t'T! such that the waves propagating from the two particles can not intersect in
[t!,tT1] x R. This is achieved by defining

pHl g ho(t)) — In(t))
2L
We claim that such a constant L exists and assume for now that

L = sup(cmax(t, ), —cmin(t, ¥)). We define the superposition of [t!,# ] x R = ByU P, U
z€R
By U P, U Bs such that Py, P> contain the particles and all waves emanating from them,

compare Figure [3.4]

Pra(t) == [h12(tiv1) — L(tiy1 —t), ha2(tiv1) + L(tiy1 — 1))
By (t) := (=00, ha(tit1) — L(ti+1 — t)]
By(t) := [h(tit1) + L(tiv1 — t), ha(tiv1) — L(tiz1 — t)]
Bs(t) := [hao(ti+1) + L(tiy1 — t),00).
for t € [t?, i1,
t

Figure 3.4.: Partition into regions influenced by the particles P, P, and regions
dominated by the Burgers equation By, By, B3. The slope of the cones
is given by L.

From the analysis done for a single particle, we know that given u(t;,-) € L*°(P;) and
given that the solution u(t,z) with z € R\ P; in the adjacent regions to P; satisfies
cmin(t, ) < u(t,z) < emax(t, ), the bounds are also true in P EL namely

Cmin(t, ) < u(t,x) < cpax(t,z) for x € Py

and the same holds equivalently for P. Also, we know for the regions Bj, j = 1,2, 3,
given u(t!,-) € L>®(B;), u(t,r) on the boundaries of B; and given that the solution u(t, z)

!This was a byproduct of constructing the L> bound in [I0] and can be found in the proof of
the corresponding Lemma.
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with # € R\ B; in the adjacent region to Bj satisfies cmin(t!, 7) < u(t, ) < cmax(t', x),
the bounds are also true in B;

Cmin(t, ) < u(t,x) < cmax(t,x). for z € B;.

as the Burgers equation with L* boundary data satisfies an L*° bound for any finite
time. Piecing together the different regions, given cpyin (', ) < u(t', z) < cmax(t', ), we

obtain ([3.20)).

Therefore, defining the new superposition of [t!,tT1] x R = ¥; U ¥y with
Si1(t) = (=00, ho(t') — L(t — t')]
Zo(t) = (ha(t) + L(t — '), 00)

Each of those regions contains only one particle, and therefore, applying Lemma 2 twice,
we obtain existence of an entropy solution in [t;,¢;+1] X R, compare Figure O

Iterating this by using ¢ = t'*! as new starting time for Lemma (3.3.13]) until reach-
ing time 7' gives the existence result on the whole domain [0,7] x R and the L> bound
follows directly from property (3.20) as long as the particle paths do not intersect.

A ha(t) ha(t) e

|2

tl

s

Figure 3.5.: Iteration of the construction method. The regions ¥, ¥ in time-step
[t1,to] contain only waves emanating from one of the particles.

3.3.6. Existence in the case of two merging particles

Having proven existence of entropy solutions if there are no particle path intersections,
there remain two cases which are investigated in this work. Merging, which is the case
when for some time tmerge € [0, 77, the ending points of two particle paths intersect. For
the sake of simplicity, it is assumed in this section, that this event is isolated, meaning
there are exactly three admissible particles in the domain, such that hy(t2) = hy(t3) =
hs(t}) and t3 = t3 = t} = tierge- The first thing to note, is, that by the method of
construction used to obtain a solution, given initial data w(tmerge, ) € L°°, we have
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3.3. Well-posedness of the Cauchy-problem for N particles

existence in the domain [tmerge, 7] X R. Therefore it is sufficient if we can prove existence
in [0, tmerge) X R. For simplicity of notation, we redefine T = tmerge-

We recall the specific problem, which is the Burgers equation influenced by two particles
in a finite time interval [0,7 = tmerge]

uz(t,:z,‘) /
Owu(t, x) + 0, = Ai(h; — u(t, x))dp, t,x Q
(o) + 00 (5 PR L
u(0, ) = up(z) re R

for given particle related friction constants Aj, A2 and admissible particles
(h1 (t), )\1), (hg(t), )\2), with hl(T) = hQ(T), hl(t) 7& hg(t) Vt S [O,T) and Q= [0, T] x R.

The result we prove now extends the existence result of the Sectionm (Lemma 3.3.13]),
further working towards the proof of Theorem [3.3.8

We state the main result for the two merging particles case.

Lemma 3.3.14. Given initial data ug € L (R) for the Cauchy problem for two merging
particles , admissible in the sense of , then there exists an entropy admissible
solution w.

Additionally, every such solution u satisfies

2
lull zee < fluollzoe + Y A (3.22)
i=1
Proof.
As the same result is true in the case of no particle interactions, we start by applying
the same time-stepping construction method as in section [3.3.5
The first thing to realise is that given any time ¢ < T, we obtain the existence of upper
and lower bounds ¢min, max(t, ) on any solution such that

Cmin(t, ) < u(t, ) < emax(t, x) (3.23)

holds true in [0, ¢] x R, by iterating Lemma

As before, combining this with the finite speed of the particles given by the Lipschitz
continuity of the particle paths , we obtain the desired L*° bound .

To explicitly construct solutions on the whole domain, it remains to check that the
merging of particles does not hinder the iteration process to reach time 7.

Recall that every new timestep is created by computing

ha(t)) — hyi ()

2Sup (Cmax(ty CL'), —Cmin (t, 1’)) '
zeR

=14

(3.24)

Directly, we also have naturally #**1 > ! as the distance of the particles is positive (ab-
solute values are not needed due to the particles being ordered, thus ha(t) > hy(t)Vt €
[0, 7).
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3. A model for fluid-particle interaction

Remark 3.3.15. Equation might seem unfitting at a first glimpse, as we did not
specify the time at which to evaluate the supremum of the bounds on the solution in the
denominator. However, as mentioned before, the time dependence of the functions cpin,
Cmaz 18 only due to the particles movement, shifting the constant states, and interactions
of particles like merging, splitting or crossing. Due to the isolation of a single event,
which is the merging of particles at the ending time of the observed domain in this
particular case, the number and order of constant states does not change here. Therefore
the denominator of the right side of is not time dependent in [0,T).

By the method of constructing solutions, the number of timesteps goes to infinity
whenever the distance between two particles goes to zero, which is the case here as
hi(T) = hao(T). Therefore, it remains to prove that lim,,_, t" = T.

The exact formula for ¢, is easily computed as

i ha(t?) — hy(t%)
— 25Up(Cmax (t, ), —Cmin(t, x))
- zeR

Assuming there exists a time t™# < T where the iteration stops, i.e.
IN € N VL = ¢V — ymax
this obviously leads to a contradiction, as

PNHL N ha(t") — ha (V)

2Sllp (Cmax(tv IB), _Cmin(tv IE)) .
z€R

>0, as h1(tN)#ha(tN)

Actually, the progression of the timestepping behaves like a quasi-Newton method, found
in most textbooks on analysis or numerics, where the slope of the timestepping remains
fixed, compare Figure

Therefore, we have t" — T as n — oo and we recover the existence result of Lemma

B.3.14 O

Remark 3.3.16. The analysis for the merging of particles can be extended to three or
more particles merging at time T', meaning there could be a set of particles Nperge, and
we could consider the problem with hi(T) = hj(T) V i,j € Nperge- The difference
in constructing the solutions would be, and this will be discussed further in section
that the two neighboring particles with the lowest distance define the timestepping.
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dist(t)
h
N fit1 \ ! h2

t

0 t! 12 B # P T

Figure 3.6.: On the left a visualization of the convergence for the construction method
and t© — T. The method behaves like a quasi-Newton method, always
reaching time 7. On the right the construction of the length of a single
timestep, given by the longest possible time, s.t. waves propagating from
the two particles don’t intersect.

3.3.7. Existence in the case of two splitting particles

At this point we have existence for the domains where no particles paths intersect and
for domains where two (or more) particles merge at time ¢t = tgpi. In this section we
will prove the existence and L° bound for the splitting of particles. Again, the splitting
event can be isolated, looking at the following specific problem.

The Burgers equation influenced by two particles in a finite time interval [0 = tgpiit, 1]
writes

u?(t, ) /
Oru(t, x) + Oy = Ai(h; —u(t, x))op. T Q
(t,x) + ( 5 > ie{%z} ( (,2))0n, (1) (t,x) € (3.25)
u(0,2) = uo(x) re R

for given particle related friction constants Ai, A2 and admissible particles
(h1(t), A1), (ha(t), A2), with h1(0) = ha(0), hi(t) # ha(t) YVt € (0,7] and Q :=[0,7] x R.

The result we prove now is the final building block for the proof of the existence claimed
by theorem further extending the existence results of Sections[3.3.5] (Lemma[3.3.13))
and (Lemma [3.3.14)), further working towards the proof of Theorem [3.3.8|

However, proving an existence result for this case is more complicated than for merging
of particles, as the time-stepping construction from section [3.3.5|is not directly applica-
ble. This is due to the fact that hqi(0) = ho(0) and therefore t?* = t! = 0. Again, the
main result is stated first, while the rest of this section is devoted to its proof.
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3. A model for fluid-particle interaction

Lemma 3.3.17. Given initial data ug € L (R) for the Cauchy problem for two splitting
particles , admissible in the sense of , then there exists an entropy admissible
solution u.

Additionally, every such solution u satisfies

2
lull o < fluollzes + Y A (3.26)
=1

The following Lemmata are necessary for the proof of Lemma Their proofs
can be found at the end of this section.

Lemma 3.3.18. Given problem and initial data ug € L with
Cmin(oax) < U(va) < cmaw(oa l‘),

for any piece-wise constant functions Cmin, Cmaz of the form then any solution
u(t,x) satisfies for all times t € [0,T],z € R

Cmin(t, ) < u(t,x) < Cmaa(t, x). (3.27)

Lemma 3.3.19. Given ug € L N BVj,.(R) and given particle paths hi(t) # ha(t) €
Lip[0,T). Then any solution u to problem satisfies

TV (u(t,-)) < TV (ug) + Kt

9 2
+2 Z dist((uo(hy ), uo(hy), Gy, (hi(0))) + Z AT Vio g
i=1

i=1
with K € R a constant.

Lemma 3.3.20. Given u(l),u% € L™ N BVj,(R) and given admissible particle paths
hi,hy € Lip[0,T] with h1(0) # ho(0). Then entropy solutions u>? to problem
with N(T') = 2 and initial data u(l), u% respectivly, satisfy the local L' -contraction

/ lul (t, x) —u?(t,2)| do < / lug — ul| da (3.28)
[—R,R] [-R—Lt,R+Lt]

for any R€ R and L = Zgge (Cmaz(t, @), —Cmin(t, z)).

Remark 3.3.21. Lemma[3.3.1§ is the same result as for the previous cases and again,
directly gives the L™ bound as a corollary. However, in contrary to the previous cases,
an approximation is needed to obtain these bounds here.

To be able to conclude convergence of the approximation to a solution of the original prob-
lem, compactness in BV, is needed, and Lemma provides the necessary bounds
i total variation.

Finally, Lemma allows to uniquely identify the obtained limit as the entropy so-

lution to problem (3.25), whose existence was claimed by Lemma[3.3.17
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3.3. Well-posedness of the Cauchy-problem for N particles

Additionally, as an approximation is unavoidable due to the missing initial data in the
region between the particles, the following approximated problem will also be considered.

6,6\2
8tu5,€ T az w — )\’L he{—U(S’E , L 6Et y L Q2

u’ (0, ) = uf(z) reR

The important novelties compared to the original splitting particles problem ([3.25|)
are the approximation of initial data

ud(z) = ug(x) * p° (3.30)

with p? being a regularizing kernel such that ug € L>*NBVj,.(R) and the choice a second
approximation, this time for the particle paths

hi(t) = h(t)

h5(t) = ha(t) + € (3.31)

removing the intersection point at time ¢ = 0 and assuring, that the particle paths are
strictly non-intersecting in the whole domain [0, 7] x R.

The following corollary of Lemma [3.3.18] and [3.3.19] gives the necessary compactness of
solutions to the approximated problem in BVjsc in order to be able to pass to the
limit using Helly’s selection theorem.

Corollary 3.3.22. Solutions to the approzimated splitting particle problem with
nitial data ug € L N BVj,.(R) and their local total variation are uniformly bounded
with respect to €, i.e. the shift of particles.

With these auxiliary results, we are now able to prove Lemma

Proof of Lemma|5.5.17,
As mentioned, we are not able to start the time-stepping construction, as problem (|3.25))

does not have sufficient initial data to cover the region in between the splitting particles.
Therefore we dismiss the approach of directly constructing the solution, and instead
consider the approximated problem , , followed by a compactness argument
to pass to original solutions.

Using Lemma we obtain that any solution u%(t, z) to problem with initial
data ug and admissible particle paths h{,h5 admits bounds of the form and
therefore is in L*°(R) for almost every time 0 < ¢t < T'. Furthermore, as the particles
are strictly apart by this approximation, Lemma gives existence of a solution u*
to the approximated problem in the whole domain [0,7] x R.

Using Lemma we know that those solution u%€ are also in BVj,. for almost every
time 0 <t <T.

As for every € > 0 and almost every time 0 < ¢t < T, we have u®¢ € L%®(R) N BVjy(R),
and, as stated by corollary those solutions are uniformly bounded and are locally
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3. A model for fluid-particle interaction

of bounded total variation, we obtain, using Helly’s selection theorem, existence of a
subsequence u® , convergent in L' with respect to €, such that

lim / Juder —ud| dz =0
ex—0 R

with u® € L= N BVjee(R).

Now we drop the regularization, letting 6 — 0, and obtain existence of a subsequence 9;
and a limit function @, such that, again converging in L!

lim / lud — @] dz =0
0,—0 Jr

with w € L*°((0,7) x R).

It remains to show that the obtained function %@ is indeed an entropy solution to (3.25]).
It is easy to see, that solutions u’€ to the approximated problem satisfy for

¢ € C®°(RT x R,R"), and all piecewise constant functions c(¢, z) of the form

c(t,x) = erlpcn, 1) + C2ln (t)<a<ha(t)+e T C3Llashotes (€1, 2, ¢3) € R?,

the following entropy inequality.

There exists M € R, such that given G; » are the admissibility germs of h1, ho respectivly

T
/ / 05 — e(t, 2)|0h + DO, o(t, 2))Dug) dvdt + / ud — c(0, 2)|6(0, 2)dx
0 R

R

T T
+ M/ dist((c1, ¢2), G1)Bla=n, (1) ds + M/ dist((c2, c3), G2)Blu=hy (t)+e ds = 0.
0 0
(3.32)

The critical terms are the comparison of the initial data with the piecewise constant
entropy auxiliary function c¢(¢, ) and the interface terms. As convergence of ug in L' is
already established, only the germ related interface terms remain.

However, as mentioned in Remark the particular states ¢; of ¢(t,z) are time-
independent constants and therefore the shift of particles only affects the position at
which the testfunction ¢ is evaluated. This means, that the interface term doesn’t
change in value, but only shifts with respect to the position of the particle as e — 0 and
we conclude that the approximations , have no effect on the interface terms.
Passing to the limit in , one obtains and therefore the limit solution @ is an
entropy solution to as claimed.

The proof is finished by using Lemma justifying uniqueness of the discovered
entropy solution. O

The remainder of this section is devoted to the proofs of Lemma [3.3.18| and [3.3.19]
Lemma(3.3.20]is a result connected to uniqueness of entropy solutions and will be proven
in section [3.3.9
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3.3. Well-posedness of the Cauchy-problem for N particles

Proof of Lemma|5.53.18,
The proof is strongly based on the proof for the case of non-intersecting particle paths.
As in the proof of Lemma |3.3.17} we choose the approximation (3.31])

As the approximated particle paths are strictly apart in [0, 7], reproducing the proof of
Lemma [3.3.13] with

Pio(t) o= [hS o (t1) = LEFT = 1), by o(87) + L — 1))
Bi(t) == (=00, hi(t'™") — Lt — 1)]

B5(t) == [h{ (¢ + L™ = ), h5(8F) — L™ — 1))
By(t) = [h5(t) + L™ — ), 00),

for t € [t t*T!] and where B§ is respectivly small, gives an L° bound in every region
again using the result for the model with a single particle. Passing to the limit with
respect to € gives the desired bound. O

It remains to prove Lemma This will require some additional Theorems from
measure theory, first and foremost the theorem of Radon-Nikodym, which is just stated
in the following, for the proof of the theorems, the reader is kindly referred to [72].
In addition, the result of existence of a bound in total variation for the model with a
single particle, which can be found in [I0] is a critical building block and repeated below.

We recall the bound in total variation in the presence of a single particle.

Theorem 3.3.23. Given uy € L*NBV,.(R) and a particle path hi(t) € Lip[0,T]. Then
any solution of the Burgers equation with a single particle satisfies the bound

TVult,-) < TVug + 2dist((uo(h™(0)), uo(hT(0))), Ga(h (0)) + 4T Vig 4.

The following theorems are textbook measure theory theorems and can be found in
[72].

Theorem 3.3.24 (Radon-Nikodym).

Given a measurable space (X, %), if a o-finite measure p on (X, X) is absolutely contin-
uous with respect to a o-finite measure v on (X,X), then there is a measurable function
f:X —[0,00), such that for any measurable subset A C X

:Af@
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3. A model for fluid-particle interaction

Theorem 3.3.25 (Lebesgue’s decomposition theorem).
For every two o-finite signed measures  and v on a measurable space (,X), there exist
two uniquely determined o-finite measures vy and vy such that

Vv=1y+1
Vo <L W & 1 15 absolutely continuous with respect to p
vy Lop < vy and i oare singular

And lastly, we define the total variation of a function f on any half-open or closed
sets as the limits

va|(a,b} = 21_13’(1) va|(a,b+e)
va|[a,b] = 11_{% va‘(a—e,b-i-s)

Remark 3.3.26. This definition of the total variation of closed sets is needed because
of the special case of appearance of shockwaves, which introduce a really point-wise con-
tribution to total variation, and whenever one defines a superposition of domains and
wants to consider the total variation, the intersection point of the domains can not be
neglected due to the possibility of a shockwave sitting at that exact point.

Proof of Lemma|5.5.19.
We start by defining for any time 0 < ¢t < T the superposition 2, Uy D [0,¢] x R with
Q4(t) = (—o0, X(t) + L(t" )]

Qo(t) = [X(t) — L(t' —t)),00) (3.33)

For multiple particles, we use for any time 0 < t! < T, with h1(0) + Lt' < ha(0) — Lt
the superposition of [0,#1] x R into €3 U s defined in with a special choice of
X1 := X (t'). First we notice, that whenever we choose X; € (h1(0) + Lt!, ho(0) — Lt!),
both regions 21, 2o are only influenced by one of the particles, thus in each reagion, we
can make use of the result for a single particle locally, i.e. theorem [3.1.7] to obtain the
TV bound

TVu(t, o)la,m) < TVuolg, (o) + 2dist((uo(hy (0), uo(h (0)), G, (H(0))) + AT Vig iy

Clearly, by our choice of ; as a superposition of R for any time 0 < t! < T, such that
h1(0) + Lt! < ha(0) — Lt!, we can compute

TVu(t', z) < TVu(t!, )|, (1) + TVu(t!, )]0y (1)

2 2
< TVuglg, o) + TV uolayo) +2 Y _ dist((uo(h; ), uo(h), Gx, (R(0))) + > ATV |9 )
=1 =1

2 2
= TVuo + TVuolpx,—rer xyren + 2 Y dist((uo(; ), uo(h), G, (R(0))) + Y ATV hijjo4.
i=1 =1
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3.3. Well-posedness of the Cauchy-problem for N particles

Note that TV ug is controlled due to the fact that ug € BV, the distance between the
particles at the initial time is finite and TV[()yt]h;, 1 = 1,2 is bounded by the Lipschitz
continuity of the particle paths in time. The last remaining term is T'Vuo|jz— 41 z4 1615
which is also finite due to ug € BVj,.

We can not hope for this to hold up to any time 7', as the condition h; (0)+ Lt' < ho(0)—
Lt! restricts our choice of t'. However, we can again use a time-stepping algorithm, using
u(tl,x) € L N BV,.(R) as new initial data and restart, obtaining an TV bound for
any time ¢2, such that hy(t') + L(t? — t') < ho(0) — L(t? — t1).

We obtain

TVU(tan) < TVu(tl,ac) + TVu(tl, '75)|[X2—L(t2—t1),Xz+L(t2—t1)}

2 2
+2 Z diSt((u(tlv hi_)’ u(tl’ h;_)v gAi(h;(tl))) + Z 4Tv[t1,t2]h/i
i=1

=1
=0
2 2
< TVug + Z (TVu(tj_l, :1:‘)|[XJ__L(tj_tj71)7Xj+L(tj_tj71)] + Z 4T‘/[tj717tj]h;)
i=1 i=1
) J
+2)  dist((uo(h; ), uo(h;), G, (15(0))).
=1

Note that the penalization term for the distance of the solution to them Germ G, exists
only at initial time, as the behaviour of our solution nullifies this distance for any time
t>0.

Reiterating finally gives for time #,41

TVu(t”'H) < TVug+ Z (TVu(tj_l, l‘)|[Xj_L(tj_tjfl)’Xj_i_L(tj_tjfl)})
= (3.34)

2 2
+2) " dist((uo(hy ), uo(hi), Ga, (R5(0))) + + > AT Vg pnijhi.

i=1 i=1
The number of timesteps remains finite, therefore controlling the second term with
respect to time. This property can be seen as the length of each timestep can be

arbitrarily chosen up to the point in time where the cones of influence of the two particles
intersect

i _ dist( (#), ha ("))
2L

th—

which is bounded below if the distance of the particles is bounded below, compare the
time-stepping construction method in section Although, for a given € > 0, this
implies u%¢ € BVioc, it remains to prove the exact bound of Lemma [3.3.19| aswell as to

verify corollary [3.3.22
At first glimpse, the TV bound appears to not be uniform with respect to €, as the
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3. A model for fluid-particle interaction

length of the timesteps depends linearly on the distance between the particles, therefore,
if € = 0, the number of timesteps goes to infinity. However, at the same time, the length
of the interval [X; — L(#/ —#/=1), X; + L(t; — tj—1)] goes to zero aswell. The remaining
estimate to establish Lemma [3.3.19 is:

There exists a constant K € R, such that

n

Z (Tvue’é(tj_l,ff)’[Xj—L(ti—tﬂ'*l),Xj+L(tJ'—tJ'*1)]) < KZ(ti—H - ti) = Kt". (3.35)
j=1 i=1

The proof is based on a good selection of X; in each timestep, using the property, that
entropy solutions to the Burgers equation have Lebesgue points on a dense set on the
real line, i.e. intervals of small total variation. First, we see that the sum on the left side
requires us to look at the total variation in the interval [X;—L(t/ —t/~1), X+ L(t/ —t7=1)]
for the solution at the previous timestep u©(t7~1,.). This is crucial, as for the previous
timestep, we already know that uﬁ";(tj —1..) € L>® N BV by the previous TV estimate
for a finite number of timesteps (3.34)). Additionally, [X; — L(#/ —#/~1), X;+ L(t/ —t771)]
lies completely in the region BS(t/)

Now we make use of the following well known property of functions of bounded total
variation.

Given a function f € BV, there exists a Radon measure v,

such that f' = v in the distributional sense.

Remark 3.3.27. This property gives the so called distributional derivative. Given the
function f € BV, the Radon measure is finite. This property is used to identify the
weak derivative of u® with a measure. Note that even though u is only in BV, as the
region [X; — L(t# — /1), X; + L(# — t/~1)] we are looking at is embedded in BS and
u € BViyo(BS), the measure we obtain is also finite.

The goal is to identify the total variation of u®® with a density function using the
theorem of Radon-Nikodym. But as the measure representing the total variation is not
absolutely continuous with respect to the Lebesgue measure, we have to first use the
Lebesgue decomposition theorem.

Remark 3.3.28. The lack of absolute continuity of the total variation with respect to
the Lebesgue measure can be seen as lime o TV ul(y—czye) # 0 if a shockwave is located
at the point x. Note also that the measure representing the total variation is a signed
measure.

By the Lebesgue decomposition theorem [3.3.25] there exist unique Radon measures
v, V1 representing the total variation of u® in [X; — L(t/ —#/71), X; + L(t/ —t/~1)] with

v=1y+1 the sum of the measures gives the total variation
vy € A vg is absolutely continuous with respect to A
vy LA v1 and A\ are singular
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It is easy to identify the measures vy, 1 with the parts of the total variation representing
the variation induced by oscillations (1) and the variation induced by shockwaves (11),
as the measures are uniquely determined.

As u € BVjy, the support of v can not lie dense in [h1(t), ho(t)] and therefore we can
always choose X; such that v ([X; —L(#/ —t/71), X;+ L(t7 —t/71)] = 0, as /1 —#J — 0.
It remains to check vy. As by the Lebesgue decomposition, vy < A and v is finite, we
obtain for each K C [hi(t), h2(t) by the theorem of Radon-Nikodym existence of an
associated positive density p defined by

/K dvp = /K o) da

such that for almost every = € [hi(t), ha(t)],  is a Lebesgue point in the sense that

p(x) = lim 1/B( | p(s)ds = 0. (3.36)

r—0 r

The last property is due to u®® € BVjy, has already been established for the previous
timestep (and is a general property of BV type solutions, and can be found in textbooks
on the topic, e.g. [47]).

Therefore we have for r sufficiently small and any Lebesgue point X € I

1
Lio(B(X,r) < p@)+1 Vo€ B(X,7)
"
v(B(X,r)) < plx)r+r Ve B(X,r)
Translating (3.37) back to our setting, we have

(3.37)

1 » 1
*TVu(t], ‘)|B(Xj,r) = / dl/() S p(Xj) + 1
r B(X;,r)

r

From (3.37) and the fact that 14 is finite, the density p(x) is in L]

loc
Therefore min  p(X) = p(Xmin) < 00 exists and we obtain
XeB(X,r)

and positive.

1 s
Z m (TVU ’5(tJ 1, x)‘[Xmin_L(tj—tjfl),Xmin—i-L(tj_tjfl)})
j=1

j=
n 1 / n
;L(tﬂ“ — ) B L+ ) ; )

with C(X) = p(Xmin) + 1. As the sum is finite, we take K = L .m[zlix]C’(Xj) and obtain
Jell,n

(3.35). The bound is uniform, as due to X; being a Lebesgue point and thus (3.36]
holds, we have for € — 0, that R := [X; — L(#/ —#/71), X; + L(# —#/71)] — 0 and
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such that there exists e and K = L max C(Xj),suchthatVe' <e: K > L max C(Xj),
jE€[ln(e)] J€tn(e)]

giving corollary O

Remark 3.3.29. Note that the last part of the proof relies heavily on the fact that all
our analysis is done in BS, which is governed by the Burgers equation and has compact
support in R for any finite time. On the whole real line, the proof would lose the finiteness
of vy and the L' property of p.

3.3.8. Extension to N particles

At this point, theorem has been proven as long as [N (t)| < 2, for all times ¢ € [0, T].
However, even if the number of particles exceeds |N(t)| = 2, the possible interactions
remain local, which is ensured by the finiteness of [N(7")| and the definition of admissible
particles.

Remark 3.3.30. The case of multiple distinct events, e.g. merging of particles, dictating
a timestepping that scales faster than the one considered in section|3.5.5, is not possible
in this setting. One could imagine for example two particles circling around each other,
where the time between the crossings of the particle paths goes to zero. It is an open
problem, if it is possible to prove a BV-estimate in this case. Here, this case is ruled out
by conditions (P2), ([P3), which would cause |[N(T)| to exceed any bound as the particles
interact infinitely often.

The algorithm designed in section [3.3.5] can be extended to give existence of entropy
solutions to the main model with finitely many admissible particles in the following
way.

The time-stepping is chosen according to the shortest distance between two particles,
such that in the i-th timestep

+ min han (#) = hyp (). (3.38)

A+l g
J1,J2€N(t) 2L

It is easy to see, that this time-stepping doesn’t cause any problem for obtaining the
previous results in the case of no particle interactions in [t!,#*!]. It remains to check
the two new possible events of multi-particle merging or splitting.

Case of multi-particle merging

Let now N(t) > 2 and hjz(tmeme) = h2(tmerge), for all j,k € N(t), i.e. the case of a
number of |N(t)| > 2 particles meeting at time ¢perge. Choosing the new time-stepping
, it is not as easy as before to see the convergence towards t,,erge, as the domains
defining the timestep vary between different particles. However, one can project the
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3.3. Well-posedness of the Cauchy-problem for N particles

convergence problem onto the following two-particles problem.

u? t,x
atua,max( ‘ ’)_ S by = ult, ) 00
le{1,2} (3.39)
ith  dist(hnew 1, new2)(t) = min  dist(hj,, hi,)(t
wi ist (hnew,1 2)(t) i ist(hjy, ) (t)

Clearly, the convergence result of Lemma [3.3.14] holds and the case of multi-particle
merging can be dealt with the same way as the merging of two particles in section [3.3.6

Remark 3.3.31. Note that dist(hpew,1, new2)(t) is still continuous, condition
does not disturb the admissibility of the particles hyew,1, hnew,2-

Case of multi-particle splitting

Let now N(t) > 2 and h]l (tspiit) = hi(tspuir), for all j,k € N(t), i.e. the case of a number
of [N(t)| > 2 particles originating from the same position at time tgp;;. As before, the
time-stepping is not a problem in the case of particle splitting, but in order to obtain
existence, an approximation and compactness of the approximate solutions is needed.
The new approximation is straight-forward considering the two-particle splitting from
section The smoothing of the initial data stays untouched

ug(@) = uo(w) * p°

with p® being a regularizing kernel such that ug € L N BV,(R).
The particle paths need now all shifting, where one is free to choose the same shift at
every particle position

hine () =l + (IN(@)] = 1e.
From this point on, one recovers the L*°-bound (and a direct extension of Lemma|3.3.12))

lullz= < lluollz= + 3 A
iEN(?)

mimicking the proof of Lemma(3.3.13|using domains Py, ..., Py -1 and By, ..., Bjng)+1
respective to the new number of particles. Additionally, existence of weak entropy solu-
tions to the approximated problem follows as in the proof of Lemma. [3.3.13
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3. A model for fluid-particle interaction

The bound in total variation can be computed and proven the same way as in the two
particles case of Lemma [3.3.19 and one obtains

TV (u(t,-)) < TV (ug) + Kt

+2 > dist((uo(hy ), uo(hi), Ga, (R5(0)) +4 > TV 4h;.
1€N(t) 1EN(t)

Therefore, using Helly’s selection theorem, one can pass to the limit in approximate
solutions and obtain existence of a weak entropy solution to the original problem, satis-

fying the entropy inequality (3.16]).

Summarizing, a time-stepping method to construct weak entropy solutions in the
presence of a finite number of particles has been shown. The time-stepping depends
on the behaviour of the particles at the present time and is able to deal with merging,
splitting and crossing of particles.
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3.3. Well-posedness of the Cauchy-problem for N particles

3.3.9. Uniqueness of entropy solutions

In this section, uniqueness of entropy solutions, admissible in the sense of , is
proven using almost classical Kruzkov type analysis. It will be shown that using the
dissipativity of the particle interfaces, one can obtain the Kato inequality and thus
uniqueness of entropy solutions and the local L! contraction of Lemma

Let Q =1[0,T] X R, ¢ € C°(Q) be a classical, compactly supported testfunction and

() 0, when |z
we(x) =
1, when |z|

with wl(z) = 2 for & < |z| <.

Given two entropy solutions u, v, we apply the method of doubling of variables, cf [56],

and choosing as a testfunction 1/1(3:, t) = ¢(x,t) X we(t,x — hi(t)) X ... X we(t,x — hn(t)),
we obtain
/]u—v[@t ¢ X H we(z — hi(t)) + /\uo—vol H we(z — hi(0))dx
1<i<N 1<i<N
+/ @(u,v)@m(qb X H we(x — hi(t)) <0.
@ 1<i<N

Note that due to the choice of testfunction, we can not see the interfaces and the method
of Kruzkov works classically. In order to generalize our testfunction again, we have to
consider the limit € — 0. Using chain rule, we obtain

N
& lu—v| | 0> we(x — hi +¢Z I owe(@ — hi(t)we(z — hy(t))

RF xR i=1 i=1 1<j£i<N

*/RWR“’“ mqszwe D+63 [ Ouuele - hit)wa - hy(®)

i=1 1<j#i<N

/|uovo| ¢(0, ) Hwexf (0))dz <O0.

1<i<N

Recognizing that
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gives

N
/!u—v (8t¢ I wew =m0y +0>  TI (hé(t))wé(ﬂfhi(t))we(fchj(t)))

1<i<N i=1 1<j£i<N

+/Q‘1>(U»v) (5x¢ II we@—hi +¢>Z II w )we(ﬂﬁhj(t)))

1<i<N i=1 1<j#i<N
/|uo—vo| H we(x — h )da: < 0.
R 1<i<N
Now we use the specific form of the derivative of we, namely w!(x—h;(t)) = _%l[hi—e,hi—g} +

%l[hﬁ%’hﬁe] and obtain

VN . lu — v|8t¢1<1i1NwE(a: — hi(t))
+ e ] wel — hy (1))
ficuoL [ (s I ecenio)
hi+e
- —hi(t lu — ] we(x — hj(t))
[ 2eng [ (5 L wie- o)
+/]R+ R@(u,v)ﬁzqﬁ I we(z = ni(t))
X 1<i<N
hi—<
¢ we(x — hy(t))
2 e (5 L e
h; +e
we(r — hj(t))
/R+ ¢ Z/h ( 1<Jg§N )
/\uo—vo\ (0, ) Hwem— da: < 0.
1<i<N

Letting € — 0, recognizing
lim we(x — hz(t)) = 1R
e—0

reincorporates the interfaces created by the particles and the related terms. Making use
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3.3. Well-posedness of the Cauchy-problem for N particles

of the traces v;"(u),vi (v) respectivly at the position of the interfaces h;(t), we obtain

& |u—v|8t¢+/ D(u,v)0,0
Rt xR

R+XR

+Z / ulhi, 1)) =7~ (v(hi, )0 (hi, 1) — Bl (ulhi, ) — 7 (o(hi,£) (s, 1)

‘Z/ O (), hu“Z/ (3 (@), 77 @)olhirt) <0

and therefore, using the definition of the entropy flux ®

/]u—v[@td)—f—q)(u,v)@zqﬁda:dt—i-/R\uo—v0|¢(0,x)dx

2 / By ()77 (0)@(ha(s), 5) — Bk, 7 (u), 77 (0)@(hals), ) ds.

Using the dissipativity of the germs for each particle, given by Proposition we get
the good signs of the right-side terms of the last inequality, which we then can drop
to obtain the Kato inequality, which classically gives uniqueness of entropy solutions.
Furthermore, integrating along the cone C' := {(z,t), || = R+ L(T —t),t € [0,T]} gives
the L'-contraction property.

87



4. Discussion and Conclusions

This thesis considered a model for interaction between a fluid, represented by the Burg-
ers equation, and an arbitrary, finite number of particles, which act as point-wise drag
forces on the fluid and manifest in multiple singular source terms.

The model featured the new aspects of particle interactions, where the interfaces created
by the particles were allowed to interfere, merge or split, the consideration of entropy
admissible weak solutions and the interaction of particles and shockwaves. To this goal,
the theory of interface admissibility for conservation laws, with examples like discon-
tinuous or restrained flux function problems and the conservative or non-conservative
coupling of regions dominated by fluid equations has been revisited. The theory on en-
tropy admissibility, which has developed multiple approaches over the last decade, like
extending the Kruzkov formulation and corresponding entropy inequality, deriving a ki-
netic formulation or studying (A, B) connections, summarized by the theory of germs,
is studied and compared for their use in the analysis of the particle model.
Well-posedness for the Riemann problem is proven, including the computation of exact
solutions for the case of multiple particles drifting away from the origin.

A definition of entropy solutions was derived, using and extending the notion of germs
to generalized germs, which give dissipative behavior across a domain influenced by mul-
tiple particles.

For the Cauchy problem, existence was proven using an explicit, time-stepping construc-
tion method and the existence results from the model with a single particle. An L
bound on weak entropy solutions was proven and the method was adapted to prove
existence in the case of merging and splitting of particles. The latter needed an approx-
imation on the particle paths and therefore compactness arguments, which were derived
using tools from functional analysis and the BV, control property of the Burgers equa-
tion with inital data with bounded total variation.

Uniqueness was proven using the dissipativity of the germs derived for the behavior of
the fluid at the position of the traveling particle interfaces.

A couple of conclusions can be drawn besides the results of well-posedness of the extended
fluid-particle interaction model. The treatment of basically regularizing the particles to
handle the non-conservative product in the source term might be a first idea to extend
the model even further to the case of particles with a given volume.

Although it was not possible to prove a global bound in total variation, as the property
was lost for the case of merging particles, and it is not clear if it is even possible at all, as
waves might be reflected back and forth between the particles, the nature of the Burgers
equation used to derive the compactness for the case of splitting particles nourishes the
hope that such a bound might indeed exist. Even though it was not the topic of this
work, there is almost no numerical result for the model with multiple particles, but sim-
ulations for two particles using a wave-front tracking algorithm have so far not brought
up any case of divergent total variation.
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The model presented another example of the excellent properties of the theory of germs,
and demonstrated the impressive possibility to extend the theory to the interesting cases
of non-conservative coupling and even coupling across domains.

The existence result might be possible to alternatively be obtained by using the numeri-
cal approach of wave-front tracking, considering the method has proven to be very useful
for the study of shocks and moving interfaces.

There remain some interesting directions to go further. For the theory with a single
particle, it was possible to do numerics on a coupling with an ordinary differential equa-
tion for the particle, which was not yet done for the case of multiple particles, and is
probably not an easy task, as the analysis there did not yet consider traveling interfaces
and is therefore probably hard to adapt.

In the spirit of extensive analysis on the particles, it might be interesting to consider
the limit N(T") — oo, using a Vlasov-type equation for the particles. There exist some
considerations of coupling the Vlasov equation to a fluid equation, see [16] 27], but one
would probably need to be very careful with the limit to not loose the well-posedness
results for entropy solutions in this model.

Finally it would of course be of great interest to consider systems of balance laws to
represent the fluid, like the Euler equations, however, as mentioned before, the notion of
entropy admissibility is an unsolved problem for those systems in higher dimensions. As
recent developments by De Lellis, Székelyhidi and Isett [35] 51] raise the question if it
is even possible to find a suitable condition to obtain uniqueness or if all the preceding
analysis was maybe done in the wrong function space, it seems unlikely that it will be
possible to extend the model in that direction.
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A. Appendix

A.1. Notation

Dealing with partial differential equations, and in particular conservation laws, this thesis
uses the customary notation in the field and additionally

u, v, W unknowns of the (hyperbolic) differential equation at hand
F, f flux functions of the (hyperbolic) differential equation at hand
O, Oy partial differential operator with respect to time, space

o, P, w testfunctions, i.e. functions from C§°

C,e, Kk, k constants

n,®,® entropy, entropy fluxes

vt left and right trace towards an interface

X the special x-function related to kinetic formulation

m,q kinetic entropy defect measures

P,V measures

hi(t) the given position of the i-th particle at time ¢

i the friction constant corresponding to the i-th particle
N(t) arbitrary but finite number of particles at time ¢

supp ¢ support of a given function g

sgn g sign function of a given function g

TV g total variation a given function g

() positive/negative part of the argument

The notion of cut-off function is also used several times throughout this work. Whenever
it is referred to that notion, a function of the following properties is meant.

Definition A.1.1 (Cut-off function).
C is called a cut-off function, if

1. ¢ € C°(RY),
2. ( is nonnegative and its support is contained in the unit ball,
8. fpaC(z)dr =1,

4. C(=2) = ((2).
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A.2. Study of the interface term for discontinuous flux Kruzkov entropies

It will often be used to recover the interface condition for a given equation, in which
case the limit of

is used.

A.2. Study of the interface term for discontinuous
flux Kruzkov entropies

This section contains the case-by-case study with respect to x,y%(u) and v (v). It is
done in a similar manner as the study of the interface term for a slightly different model
equation in [13].

Recall that the inequality to prove is

0 < kp®(y~(u),7™(v) = kr®(Y"(w),7(v)) = I [2.11)
Proof. Studying the original entropy inequality already gave
kp® (v~ (u), v~ (v)) = kr® (v (u), v (v)) — kL — krlf(k) < 0. @.12)
The case-by-case study is partitioned by the sign inside the entropy flux terms in .
1. Assume sgn(y~ (u)(t) — v~ (v)(t)) = sgn(y*(u)(t) — v+ (v)(t)) = ¢, such that

kr® (v~ (u)(8), 7™ (0)(8) = kra(y " (w) (), 7" (v)(1))
= clkrf (v (W) (t) = ko f (v~ (0)(O)] = clkrf (v (W) (t) = krf(y" () (1))
= 0 =1 Dbecause of the Rankine-Hugoniot condition (1.4)).

2. Assume v~ (u) > v~ (v) and vt (u) < yT(v).

By the Rankine-Hugoniot condition (1.4) for u and v respectivly, the following
holds true in this case

2k (f(v™(w) = f(v(v))) = 2kr(f (7" (u)) — fF(7(v))).
such that

o v (v) <y (u)
means u) < v) < v~ (u), and by choosing k = ) in (2. we get
Y (u) <4 (v) <~ (u), and by choosing k = 7" (u) in (2.12) we g

2kpf(v"(w) = 2kpf(y"(u)) 20— I > 0.
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° v (v) > (u)
means v~ (v) <~ (u) < v (v) and choosing x = v~ (u) in (2.12)) gives

2k f(y~ (w)) =2k f(y"(v)) 20— I > 0.
3. Assume 7~ (u) <y (v) and v (u) >~y (v)

By the Rankine-Hugoniot condition (1.4]) for u and v respectivly, the following
holds true in this case

2k (f(v~(v) = F(7™ (w)) = 2kr(f(vF (u)) = fF(7(v)))-
such that

° 7 (v) <7 (v)
means v~ (u) < v~ (v) <7 (u), and by choosing k =y~ (v) in (2.12)) we get

2krf(v"(v)) =2k f(y" (u) 20— T > 0.

° v (v) > (u)
means y*(v) <yt (u) <y~ (v) and choosing x = v (u) in (2.12)) gives

2krf(v"(v) = 2kpf(v" (w) 20— I > 0.

This completes the proof of (2.11)). O

A.3. Kinetic indicator function and defect measure
properties

The function y used as an indicator function in the kinetic formulation operates on the
new variable £ and uses the original solution u(t, z) as a parameter.For any £ € R,u € R
it is defined as

1, for 0 < € < u,
x(&u) =< —1, for u < £ <0,
0, otherwise.

The following useful properties of x are proven in this section. In fact, there are a lot
more interesting properties of y and the function is originally found as a description for
the weak limit of a family S(u,) of a bounded sequence (uy)nen in L. But as the focus
of this work is on uniqueness of weak entropy solutions to conservation laws, more details
on the function x would not serve the purpose of this work and I want to recommend
the interested reader the book of Perthame [68] for further information and details.
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Theorem A.3.1 (Main properties of x).
Let S’ € LSS, then the following properties related to x hold true.

loc’
Oex(&u) = 6(8) —6(§ —u) (A.1)
/R S/(E)x(€:w) dt = S(u) — 5(0) (A2)
/R (€ ) — x(& )] dE = |u— o] (A.3)

Proof. In view of the fact that y takes value 1 in 0 < £ < u, —1 inu < £ < 0 for
positive, negative u respectively and is zero elsewhere, the first and third property are
obviously true by simple computation. The second one also follows by investigating the
taken values inside the integral. Because of the symmetry, consideration of the case
u > v is sufficient. Then x(&;u) — x(&;v) takes value 1 in v < £ < u and zero otherwise,
justifying the second property by integration. O

The kinetic entropy defect measure m(t,z, &)

The nonnegative measure m(t, z,£) on the right hand side is the second important part
of the kinetic formulation. As one can see in the derivation of the kinetic formulation
in the next section, the kinetic formulation already contains the entropy condition and
thus chooses the physically admissible solution without further adjustments. In fact, the
entropy condition is encoded within the positivity of the kinetic entropy defect measure,
which is seen by investigating the behavior of m in the presence of shock waves, compare
section 3.3 of the book by Perthame [68].

We assume convexity on the flux, which is classically and reflects the physical problems
represented by conservation laws such as traffic models. Therefore we already know
f'(+) is increasing and from the Rankine-Hugoniot condition (L.4), that for shockwaves
of speed s

s = M = f(&) for some &y € [up,ur).
UR — UJ,

The last equality being true due to Rolle’s lemma. Computing the kinetic formulation
near the jump of the shock, one ends up with a formula for the kinetic entropy defect
measure

S u(t,2)) + 7€) Var(&,u(t,2)) = [a(6) — s]x(& ) — x(6& w)}o(z — ).

Integrating over the right side with respect to £ and using the definition of the kinetic
entropy defect measure, i.e. dem = dpx (&, u) + f'(€) - Oxx (&, u), one obtains

m(t,x,&) = c(§)d(x — st)sgn(u, — uy). (A.4)
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with
=0, for £ < min(uy, u;) =: U,
(€)4 =0,  for &> max(up,ur) = un,
<0 otherwise.

It follows for u,, < & < wups

3
(€)= / (F'() = $)dC = F(€) — Flum) — $(€ — ).

Observe, that for u,, < & < &), c¢(§) is decresing from zero to a negative value and
increasing back to value zero for §y < ¢ < wuys. Therefore ¢(§) is nonpositive and to
ensure the demanded positivity of the kinetic entropy defect measure, compare , it
has to be u; < u,. This already excludes nonphysical rarefaction shocks, and therefore
the kinetic formulation does not need an additional entropy condition for shockwaves
rising from the evolution of the solution, in contrary to the Kruzkov formulation.
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